World Library  
Flag as Inappropriate
Email this Article

Postreplication checkpoint

Article Id: WHEBN0010645786
Reproduction Date:

Title: Postreplication checkpoint  
Author: World Heritage Encyclopedia
Language: English
Subject: Cell cycle, Cellular apoptosis susceptibility protein, CDKN2D, Cyclin B2, CUL7
Collection: Cell Cycle
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Postreplication checkpoint

Contents

  • Postreplication checkpoint 1
  • The signal for activation 2
  • References 3
  • External links 4

Postreplication checkpoint

When the genomic DNA of eukaryotic cells becomes damaged by spontaneous processes, chemical mutagens, or sunlight exposure, the replication of damaged DNA triggers a cellular response called a postreplication checkpoint.[1] This response prevents cell cycle progression until postreplication repair processes are completed, and may control the activity of these DNA repair pathways.[2] In cell types that execute S phase before mitosis, such as fission yeast and human cells, the postreplication checkpoint makes time for repair by delaying the onset of mitosis. In cell types where mitosis and S phase are concurrent, such as budding yeast, the postreplication checkpoint delays the progress of mitosis at metaphase.[3]

The chk1 gene is required to mediate the postreplication checkpoint and is conserved in yeast and humans. Fission yeast cells in which the chk1 gene has been disrupted progress normally through the cell cycle after exposure to UV radiation until they have carried damaged DNA through S-phase and the subsequent mitosis, at which point cells begin to die and exhibit gross chromosomal damage.[1] The BRCA1 tumor suppressor plays a role in the activation of human chk1,[4] therefore the postreplication checkpoint may prevent the genetic changes that lead to cancer.

The signal for activation

A number of genes required for the postreplication checkpoint encode proteins that recognize single-stranded DNA and the 5' end of transitions between single-stranded DNA and double-stranded DNA.[5][6] These structure are known to be generated in two different ways during S phase. The replication of DNA containing damaged bases leaves gaps in the newly synthesized DNA strand,[7][8] and the replication of nicked or gapped DNA creates double-strand breaks. Both structures are thought to activate the postreplication checkpoint.

References

  1. ^ a b Proc Natl Acad Sci U S A 2006; 103:15877-82UV irradiation induces a postreplication DNA damage checkpoint.Callegari AJ, Kelly TJ.
  2. ^ Cell Cycle 2007; 6:660-6.Shedding light on the DNA damage checkpoint.Callegari AJ, Kelly TJ.
  3. ^ Cohen-Fix O, Koshland D. The anaphase inhibitor of Saccharomyces cerevisiae Pds1p is a target of the DNA damage checkpoint pathway. Proc Natl Acad Sci U S A 1997; 94:14361-6.
  4. ^ Yarden RI, Pardo-Reoyo S, Sgagias M, Cowan KH, Brody LC. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002; 30:285-9.
  5. ^ Ellison V, Stillman B. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 2003; 1:E33.
  6. ^ Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 2003; 300:1542-8.
  7. ^ Lehmann AR. Post-replication repair of DNA in ultraviolet-irradiated mammalian cells. No gaps in DNA synthesized late after ultraviolet irradiation. Eur J Biochem 1972; 31:438-45.
  8. ^ Lopes M, Foiani M, Sogo JM. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol Cell 2006; 21:15-27.

External links

  • Expert commentary on Faculty of 1000
  • Commentary in Nature
  • Commentary in Journal of Investigative Dermatology
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.