World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0026614462
Reproduction Date:

Title: 3,4-Dichloromethylphenidate  
Author: World Heritage Encyclopedia
Language: English
Subject: HDMP-28, 4-Methylmethylphenidate, Designer drugs, Caffeine, Isoethcathinone
Collection: Chloroarenes, Designer Drugs, Methyl Esters, Organochlorides, Piperidines, Stimulants
Publisher: World Heritage Encyclopedia


Systematic (IUPAC) name
Methyl (2R)-2-(3,4-dichlorophenyl)-2-[(2R)-piperidin-2-yl]acetate
Clinical data
Legal status
  • Unscheduled
Routes Oral
CAS number  N (recemic)
1364331-88-3 (R, R absolute stereochemistry)
ATC code None
ChemSpider  YesY
Chemical data
Formula C14H17Cl2NO2 
Mol. mass 302.196 g/mol

3,4-Dichloromethylphenidate is a stimulant drug related to methylphenidate. Dichloromethylphenidate is a potent psychostimulant that acts as both a dopamine reuptake inhibitor and norepinephrine reuptake inhibitor, meaning it effectively boosts the levels of the norepinephrine and dopamine neurotransmitters in the brain, by binding to, and partially blocking the transporter proteins that normally remove those monoamines from the synaptic cleft

The threo-diastereomer (3,4-CTMP) is approximately seven times more potent than methylphenidate in animal studies, but has weaker reinforcing effects due to its slower onset of action.[1][2][3][4][5] However, H. M. Deutsch's discrimination ratio implies it to be more reinforcing than cocaine.[3]

See also


  1. ^ Deutsch, H.; Shi, Q.; Gruszecka-Kowalik, E.; Schweri, M. (1996). "Synthesis and pharmacology of potential cocaine antagonists. 2. Structure-activity relationship studies of aromatic ring-substituted methylphenidate analogs".  
  2. ^ Wayment, HK; Deutsch, H; Schweri, MM; Schenk, JO (1999). "Effects of methylphenidate analogues on phenethylamine substrates for the striatal dopamine transporter: potential as amphetamine antagonists?". Journal of Neurochemistry 72 (3): 1266–74.  
  3. ^ a b Schweri, MM; Deutsch, HM; Massey, AT; Holtzman, SG (2002). "Biochemical and behavioral characterization of novel methylphenidate analogs". The Journal of Pharmacology and Experimental Therapeutics 301 (2): 527–35.  
  4. ^ Davies, HM; Hopper, DW; Hansen, T; Liu, Q; Childers, SR (2004). "Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites". Bioorganic & Medicinal Chemistry Letters 14 (7): 1799–802.  
  5. ^ Kim, D.; Deutsch, H.; Ye, X.; Schweri, M. (2007). "Synthesis and pharmacology of site-specific cocaine abuse treatment agents: restricted rotation analogues of methylphenidate".  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.