World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0004169687
Reproduction Date:

Title: Pralidoxime  
Author: World Heritage Encyclopedia
Language: English
Subject: Dioxathion, Botulinum toxin, Ethanol, Prednisolone/promethazine, Diacetylnalorphine
Publisher: World Heritage Encyclopedia


Systematic (IUPAC) name
Clinical data
Pregnancy cat.
  • C
Legal status
  • Prescription only
CAS number  YesY
ATC code V03
ChemSpider  YesY
Synonyms 1-methylpyridine-6-carbaldehyde oxime
Chemical data
Formula C7H9N2O+
Mol. mass 137.159 g/mol

Pralidoxime (2-pyridine aldoxime methyl chloride,) or 2-PAM, usually as the chloride or [1] or acetylcholinesterase inhibitors (nerve agents) in conjunction with atropine and diazepam.

Mechanism of action

Pralidoxime is typically used in cases of organophosphate poisoning. The acetylcholinesterase enzyme has two parts to it. An acetylcholine molecule, bound at both ends to both sites of the enzyme, is cleaved in two to form acetic acid and choline. In organophosphate poisoning, an organophosphate binds to just one end of the acetylcholinesterase enzyme (the esteric site), blocking its activity. Pralidoxime is able to attach to the other half (the unblocked, anionic site) of the acetylcholinesterase enzyme. It then binds to the organophosphate, the organophosphate changes conformation, and loses its binding to the acetylcholinesterase enzyme. The conjoined poison / antidote then unbinds from the site, and thus regenerates the enzyme, which is now able to function again.

After some time though, some inhibitors can develop a permanent bond with cholinesterase, known as aging, where oximes such as pralidoxime cannot reverse the bond. Pralidoxime is often used with atropine (a muscarinic antagonist) to help reduce the parasympathetic effects of organophosphate poisoning. Pralidoxime is only effective in organophosphate toxicity (i.e. it does not have an effect if the acetylcholinesterase enzyme is carbamylated, as occurs with neostigmine or physostigmine).

Pralidoxime has an important role in reversing paralysis of the respiratory muscles but due to its poor blood–brain barrier penetration, it has little effect on centrally-mediated respiratory depression. This is why [2]


Intravenous infusions can lead to respiratory or cardiac arrest if given too quickly.[3]


When atropine and pralidoxime are used together, the signs of atropinization (flushing, mydriasis, tachycardia, dryness of the mouth and nose) may occur earlier than might be expected when atropine is used alone. This is especially true if the total dose of atropine has been large and the administration of pralidoxime has been delayed.

The following precautions should be kept in mind in the treatment of anticholinesterase poisoning, although they do not bear directly on the use of pralidoxime: since barbiturates are potentiated by the anticholinesterases, they should be used cautiously in the treatment of convulsions; morphine, theophylline, aminophylline, succinylcholine, reserpine, and phenothiazine-type tranquilizers should be avoided in patients with organophosphate poisoning.


There are no known absolute contraindications for the use of pralidoxime. Relative contraindications include known hypersensitivity to the drug and other situations in which the risk of its use clearly outweighs possible benefit.

Chemical synthesis

Pralidoxime, 2-pyridinaldoxime methylchloride, is synthesized by reacting picolinaldehyde (2-formyl pyridine) with hydroxylamine, giving pyridine-2-aldoxime, which is further reacted with methyl iodide, giving the desired pralidoxime.[4][5][6][7]

See also


  1. ^ Jokanović M, Prostran M (2009). "Pyridinium oximes as cholinesterase reactivators. Structure-activity relationship and efficacy in the treatment of poisoning with organophosphorus compounds". Curr. Med. Chem. 16 (17): 2177–88.  
  2. ^ [2]Banerjee I, Tripathi S K, Roy A S. Efficacy of pralidoxime in organophosphorus poisoning: Revisiting the controversy in Indian setting. J Postgrad Med 2014;60:27-30
  3. ^ Baxter Healthcare Corporation 2006, Protopam Prescribing Information
  4. ^ D. Nachmansonn, S. Ginsburg, U.S. Patent 2,816,113 (1957)
  5. ^ L.P. Black, U.S. Patent 3,123,613 (1964)
  6. ^ D.E. Easterday, A.A. Kondritzer, U.S. Patent 3,140,289 (1964)
  7. ^ W.B. McDowell, U.S. Patent 3,155,674 (1964)

External links

  • Chemical Bioweapons website
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.