World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0003560079
Reproduction Date:

Title: Acamprosate  
Author: World Heritage Encyclopedia
Language: English
Subject: Levomethadone, Methadone, Neramexane, Drug rehabilitation, Calcium carbimide
Collection: Acetamides, Addiction Psychiatry, Drug Rehabilitation, Drugs with Unknown Mechanisms of Action, Sedatives, Sulfonic Acids
Publisher: World Heritage Encyclopedia


Systematic (IUPAC) name
3-Acetamidopropane-1-sulfonic acid
Clinical data
Legal status
Routes of
Oral (333mg tablets of acamprosate calcium)[1]
Pharmacokinetic data
Bioavailability 11%[1]
Protein binding Negligible[1]
Metabolism Nil[1]
Biological half-life 20 to 33 hours[1]
Excretion Renal[1]
CAS Registry Number  Y
ATC code N07
PubChem CID:
DrugBank  Y
ChemSpider  Y
Chemical data
Formula C5H11NO4S
Molecular mass 181.211 g/mol

Acamprosate, sold under the brand name Campral, is a medication used along with counselling in the treatment of alcohol dependence.[2]

Acamprosate is thought to stabilize the chemical balance in the brain that would otherwise be disrupted by alcohol withdrawal.[3] Reports indicate that acamprosate works to best advantage in combination with psychosocial support and can help facilitate reduced consumption as well as full abstinence.[4][5] Certain serious side effects include allergic reactions, irregular heartbeats, and low or high blood pressure, while less serious side effects include headaches, insomnia, and impotence.[6] Diarrhea is the most common side-effect.[7] Acamprosate should not be taken by people with kidney problems or allergies to the drug.[8]

Until it became a generic in the United States, Campral was manufactured and marketed in the United States by Forest Laboratories, while Merck KGaA markets it outside the US. It is sold as 333 mg white and odorless tablets of acamprosate calcium, which is the equivalent of 300 mg of acamprosate.[1]


  • Medical uses 1
  • Contraindications 2
  • Interactions 3
  • Pharmacology 4
    • GABA 4.1
    • NMDA 4.2
    • Calcium 4.3
    • Neuroprotective effects 4.4
  • Society and culture 5
    • Names 5.1
    • Approval 5.2
  • See also 6
  • References 7

Medical uses

Acamprosate is useful when used along with counselling in the treatment of alcohol dependence.[2] Over three to twelve months it increases the number of people who do not drink at all and the number of days without alcohol.[2] It appears to work as well as naltrexone.[2]


Acamprosate is primarily removed by the kidneys and should not be given to people with severely impaired kidneys (creatinine clearance less than 30ml/min). A dose reduction is suggested in those with moderately impaired kidneys (creatinine clearance between 30ml/min and 50ml/min).[9][10] It is also contraindicated in those who have a strong allergic reaction to acamprosate calcium or any of its components.[9][10]


Current studies have not shown any serious drug-drug interactions between acamprosate and alcohol, diazepam, imipramine, or disulfiram.[9] One study found that giving acamprosate with naltrexone had no harmful effects and no clinically important effects on the pharmacokinetics of either drugs.[11]


acamprosate calcium

The mechanism of action of acamprosate is unknown and controversial.[12] At high concentrations, well above those that occur clinically (1–3 μM), reports of inhibition of glutamate receptor-activated responses (1 mM), enhancement of NMDA receptor function (300 μM), weak antagonization of the NMDA receptor, partial agonism of the polyamine site of the NMDA receptor, and possible inhibition of the mGluR1 and mGluR5 (10 μM) have all been published.[12] However, no direct action of acamprosate at clinically-relevant concentrations has yet been reported. Moreover, a subsequent study found no action of acamprosate on the mGluR1 or mGluR5 at concentrations as high as 100 μM, nor at GABAA or glycine receptors or voltage-gated sodium channels.[12]


Ethanol and benzodiazepines act on the central nervous system by binding to the GABAA receptor, increasing the effects of the inhibitory neurotransmitter GABA (i.e., it is a positive allosteric modulator). In chronic alcohol abuse, one of the main mechanisms of tolerance is attributed to GABAA receptors becoming downregulated (i.e. becoming generally less sensitive to the inhibitory effect of the GABA system). When alcohol is no longer consumed, these down-regulated GABAA receptor complexes are so insensitive to GABA that the typical amount of GABA produced has little effect; compounded with the fact that GABA normally inhibits action potential formation, there are not as many receptors for GABA to bind to — meaning that sympathetic activation is unopposed, leading to sympathetic over-stimulation. Acamprosate's mechanism of action is supposed to be, at least partially, due to an enhancement effect on GABA receptors. It has been purported to open the chloride ion channel in a novel way as it does not require GABA as a cofactor, making it less liable for dependence than benzodiazepines. Its mode of action is similar to methocarbamol as it also does not require GABA as a cofactor. Thus, down regulation of the GABAA receptor is rare with methocarbamol and acamprosate. Methocarbamol only has a two-hour half-life, and so it is not useful in long-term therapy like acamprosate is with a long 33 hour half life. Acamprosate has been successfully used to control tinnitus, hyperacusis, ear pain and inner ear pressure during alcohol due to spasms of the tensor tympani muscle.


In addition, alcohol also inhibits the activity of N-methyl-D-aspartate receptors (NMDARs). Chronic alcohol consumption leads to the overproduction (upregulation) of these receptors. Thereafter, sudden alcohol abstinence causes the excessive numbers of NMDARs to be more active than normal and to contribute to the symptoms of delirium tremens and excitotoxic neuronal death.[13] Withdrawal from alcohol induces a surge in release of excitatory neurotransmitters like glutamate, which activates NMDARs.[14] Acamprosate reduces this glutamate surge.[15] The drug also protects cultured cells from excitotoxicity induced by ethanol withdrawal[16] and from glutamate exposure combined with ethanol withdrawal.[17]


In contrast to the aforementioned wide array of purported mechanisms of action, a 2013 profile animal study published in Neuropsychopharmacology[18] suggests that acamprosate has by itself no psychotropic profile, no N-methyl-D-aspartate receptor or metabotropic glutamate receptor 5 activity, and that therapeutic effects are due to the active calcium moiety co-administered with the acamprosate salt form. These findings have not yet been reproduced.

Neuroprotective effects

In addition to its apparent ability to help patients refrain from drinking, some evidence suggests that acamprosate is neuroprotective (that is, it protects neurons from damage and death caused by the effects of alcohol withdrawal, and possibly other causes of neurotoxicity).[15][19] For example, acamprosate has been found to protect cultured cells from damage induced by ischemia (inadequate blood flow).[20] The drug also protected infant hamsters from brain damage induced by injections of the toxin ibotenic acid (which exacerbates excitotoxicity, the harmful over-activation of glutamate receptors).[21]

One Brazilian study has shown that acamprosate may be an effective treatment for tinnitus.[22]

Society and culture


Acamprosate is the INN and BAN. Acamprosate calcium is the USAN and JAN. It is also technically known as known as N-acetylhomotaurine or as calcium acetylhomotaurinate,

It is sold under the brand name Campral.


While the Food and Drug Administration (FDA) in the United States approved this drug in July 2004, it has been legal in Europe since 1989. After it approved the drug, the FDA released this statement:

While its mechanism of action is not fully understood, Campral is thought to act on the brain pathways related to alcohol abuse. Campral was demonstrated to be safe and effective by multiple placebo-controlled clinical studies involving alcohol-dependent patients who had already been withdrawn from alcohol, (i.e., detoxified). Campral proved superior to placebo in maintaining abstinence (keeping patients off alcohol consumption), as indicated by a greater percentage of acamprosate-treated subjects being assessed as continuously abstinent throughout treatment. Campral is not addicting and was generally well tolerated in clinical trials. The most common adverse events reported for patients taking Campral included headache, diarrhea, flatulence, and nausea.[23]

See also


  1. ^ a b c d e f g h "Campral Description" (PDF). Archived from the original (PDF) on 2006-03-18. Retrieved 2006-04-02. 
  2. ^ a b c d Plosker, GL (July 2015). "Acamprosate: A Review of Its Use in Alcohol Dependence.". Drugs 75 (11): 1255–68.  
  3. ^ Williams, SH. (2005). "Medications for treating alcohol dependence". American Family Physician 72 (9): 1775–1780.  
  4. ^ Mason, BJ (2001). "Treatment of alcohol-dependent outpatients with acamprosate: a clinical review.". The Journal of clinical psychiatry. 62 Suppl 20: 42–8.  
  5. ^ Nutt, DJ (2014). "Doing it by numbers: A simple approach to reducing the harms of alcohol". JOURNAL OF PSYCHOPHARMACOLOGY 28: 3–7.  
  6. ^ "Acamprosate". 2005-03-25. Archived from the original on 22 December 2006. Retrieved 2007-01-08. 
  7. ^ Wilde, MI; Wagstaff, AJ (June 1997). "Acamprosate. A review of its pharmacology and clinical potential in the management of alcohol dependence after detoxification".  
  8. ^ "Acamprosate Oral - Who should not take this medication?". Retrieved 2007-01-08. 
  9. ^ a b c Saivin, S; Hulot, T; Chabac, S; Potgieter, A; Durbin, P; Houin, G (Nov 1998). "Clinical Pharmacokinetics of Acamprosate". Clinical Pharmacokinetics 35 (5): 331–345.  
  10. ^ a b "Campral Prescribing Information" (PDF). Forest Pharmaceuticals. 2004. Retrieved 28 October 2014. 
  11. ^ Mason, BJ; Goodman, AM; Dixon, RM; Hameed, MH; Hulot, T; Wesnes, K; Hunter, JA; Boyeson, MG (Oct 2002). "A pharmacokinetic and pharmacodynamic drug interaction study of acamprosate and naltrexone". Neuropsychopharmacology 27 (4): 596–606.  
  12. ^ a b c Reilly, Matthew T.; Lobo, Ingrid A.; McCracken, Lindsay M.; Borghese, Cecilia M.; Gong, Diane; Horishita, Takafumi; Adron Harris, R. (2008). "Effects of Acamprosate on Neuronal Receptors and Ion Channels Expressed inXenopusOocytes". Alcoholism: Clinical and Experimental Research 32 (2): 188–196.  
  13. ^ Tsai, G; Coyle, JT (1998). "The role of glutamatergic neurotransmission in the pathophysiology of alcoholism". Annual review of medicine 49: 173–84.  
  14. ^ Tsai, GE; Ragan, P; Chang, R; Chen, S; Linnoila, VM; Coyle, JT (1998). "Increased glutamatergic neurotransmission and oxidative stress after alcohol withdrawal". The American Journal of Psychiatry 155 (6): 726–32.  
  15. ^ a b De Witte, P; Littleton, J; Parot, P; Koob, G (2005). "Neuroprotective and abstinence-promoting effects of acamprosate: elucidating the mechanism of action". CNS Drugs 19 (6): 517–37.  
  16. ^ Mayer, S; Harris, BR; Gibson, DA; Blanchard, JA; Prendergast, MA; Holley, RC; Littleton, J (2002). "Acamprosate, MK-801, and ifenprodil inhibit neurotoxicity and calcium entry induced by ethanol withdrawal in organotypic slice cultures from neonatal rat hippocampus". Alcoholism, clinical and experimental research 26 (10): 1468–78.  
  17. ^ Al Qatari, M; Khan, S; Harris, B; Littleton, J (2001). "Acamprosate is neuroprotective against glutamate-induced excitotoxicity when enhanced by ethanol withdrawal in neocortical cultures of fetal rat brain". Alcoholism, clinical and experimental research 25 (9): 1276–83.  
  18. ^ Spanagel R, Vengeliene V, Jandeleit B, Fischer WN, Grindstaff K, Zhang X, Gallop MA, Krstew EV, Lawrence AJ, Kiefer F (March 2014). "Acamprosate produces its anti-relapse effects via calcium.". Neuropsychopharmacology. 39 (4): 783–791.  
  19. ^ Mann K, Kiefer F, Spanagel R, Littleton J (July 2008). "Acamprosate: recent findings and future research directions". Alcohol. Clin. Exp. Res. 32 (7): 1105–10.  
  20. ^ Engelhard, K; Werner C; Lu H; Mollenberg O; Zieglgansberger W; Kochs E (2006). "The neuroprotective effect of the glutamate antagonist acamprosate following experimental cerebral ischemia. A study with the lipid peroxidase inhibitor u-101033e". Anaesthesist 49 (9): 816–821.  
  21. ^ Adde-Michel, C; Hennebert O; Laudenbach V; Marret S; Leroux P (2005). "Effect of acamprosate on neonatal excitotoxic cortical lesions in in utero alcohol-exposed hamsters". Neuroscience Letters 374 (2): 109–112.  
  22. ^ Azevedo AA, Figueiredo RR (2005). "Tinnitus treatment with acamprosate: double-blind study". Braz J Otorhinolaryngol 71 (5): 618–23.  
  23. ^ "FDA Approves New Drug for Treatment of Alcoholism". FDA Talk Paper.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.