World Library  
Flag as Inappropriate
Email this Article
 

Boeing X-45

X-45
Boeing X-45A
Role Unmanned Combat Air Vehicle
Manufacturer Boeing Integrated Defense Systems
First flight 22 May 2002
Primary user United States Air Force
Number built 2
Variants Phantom Ray

The Boeing X-45 unmanned combat air vehicle is a concept demonstrator for a next generation of completely autonomous military aircraft, developed by Boeing's Phantom Works. Manufactured by Boeing Integrated Defense Systems, the X-45 was a part of DARPA's J-UCAS project.

Contents

  • Development 1
  • Variants 2
    • X-45A 2.1
    • X-45B/C 2.2
    • X-45N 2.3
    • Phantom Ray 2.4
  • Specifications (X-45A) 3
  • See also 4
  • References 5
  • External links 6

Development

Boeing developed the X-45 from research gathered during the development of the Bird of Prey. The X-45 features an extremely low-profile dorsal intake placed near the leading edge of the aircraft. The center fuselage is blended into a swept lambda wing, with a small exhaust outlet. It has no vertical control surfaces — split ailerons near each wingtip function as asymmetric air brakes, providing rudder control, much as in Northrop's flying wings.

X-45A test flight

Removing the pilot and its associated facilities dramatically reduces the aircraft's cost. Operators may remotely command the aircraft, but the actual piloting is autonomous.

Variants

X-45A

Boeing built two of the model X-45A; both were scaled-down proof-of-concept aircraft. The first was completed by Boeing's Phantom Works in September 2000.[1] The goal of the X-45A technology demonstrator program was to develop the technologies needed to "conduct suppression of enemy air defense missions with unmanned combat air vehicles."[1] The first generation of unmanned combat air vehicles are primarily planned for air-to-ground roles with defensive air-to-air capabilities coupled with significant remote piloting.

X-45A underside with weapons bay door open

The X-45A had its first flight on May 22, 2002, and the second vehicle followed in November of that year. On April 18, 2004, the X-45A's first bombing run test at Edwards Air Force Base was successful; it hit a ground target with a 250-pound inert precision-guided munition. On August 1, 2004, for the first time, two X-45As were controlled in flight simultaneously by one ground controller.

On February 4, 2005, on their 50th flight, the two X-45As took off into a patrol pattern and were then alerted to the presence of a target. The X-45As then autonomously determined which vehicle held the optimum position, weapons (notional), and fuel load to properly attack the target. After making that decision, one of the X-45As changed course and the pilot-operator allowed it to attack the simulated antiaircraft emplacement. Following a successful strike, another simulated threat, this time disguised, emerged and was subsequently destroyed by the second X-45A.[2] This demonstrated the ability of these vehicles to work autonomously as a team and manage their resources, as well as to engage previously-undetected targets, which is significantly harder than following a predetermined attack path.

After the completion of the flight test program, both X-45As were sent to museums, one to the National Air and Space Museum, and the other to the National Museum of the United States Air Force at Wright-Patterson Air Force Base, where it was inducted on November 13, 2006.[1][3]

X-45B/C

The newer, larger X-45C
X-45C from the side

The larger X-45B design was modified to have even more fuel capacity and three times greater combat range, becoming the X-45C. Each wing's leading edge spans from the nose to the wingtip, giving the aircraft more wing area, and a planform very similar to the B-2 Spirits'. The first of the three planned X-45C aircraft was originally scheduled to be completed in 2006, with capability demonstrations scheduled for early 2007. By 2010, Boeing hoped to complete an autonomous aerial refueling of the X-45C by a KC-135 Stratotanker. Boeing has displayed a mock-up of the X-45C on static displays at many airshows.

The X-45C portion of the program received $767 million from DARPA in October 2004, to construct and test three aircraft, along with several supplemental goals. The X-45C included an F404 engine.[4] In July 2005, DARPA awarded an additional $175 million to continue the program, as well as implement autonomous Aerial refueling technology.[5]

On March 2, 2006, the US Air Force decided not to continue with the X-45 project. However, Boeing submitted a proposal to the Navy for a carrier based demonstrator version of the X-45, designated the X-45N.

X-45N

The X-45N was Boeing's proposal to the Navy's Unmanned Combat Air Systems demonstration project. When it became known that the US Air Force would end funding to the Joint Unmanned Combat Air System program[6] (which included the X-45 and X-47), the US Navy started its own UCAS program.[7] Requirements were defined over the summer of 2006, and proposals were submitted in April 2007.[8]

The first flight of the X-45N was planned for November 2008, had Boeing won the contract.[9] The contract was eventually awarded to Northrop Grumman's proposed naval X-47, thus ending the X-45 program.[10]

The software Boeing developed to allow the X-45N to land and takeoff autonomously on aircraft carriers has recently been installed on the first F/A-18F, which has used it to perform autonomous approaches. All autonomous approaches ended with a wave-off by design. This Super Hornet is expected to be able to hook the carrier's arrester cables autonomously by the 2009 timeframe,[11] setting the stage for carrier-borne UAV operations.

Phantom Ray

Boeing planned to develop and demonstrate an unmanned flying test bed for advanced air system technologies. The internally funded program, called Phantom Ray, uses the X-45C prototype vehicle[12] that Boeing originally developed for the Defense Advanced Research Projects Agency (DARPA)/U.S. Air Force/U.S. Navy Joint-Unmanned Combat Air System (J-UCAS) program. The UAV was not aimed at any particular program or competition.[13] However, Boeing may plan to use a design based on the Phantom Ray for the Navy's unmanned carrier-launched surveillance and strike (UCLASS) program.[14]

Specifications (X-45A)

X-45 deploying a GPS-guided bomb

Data from Airforce Technology,[15] Boeing page[16]

General characteristics

Performance

Armament

See also

Related development
Aircraft of comparable role, configuration and era

References

  1. ^ a b c Swan, Sarah (2006-11-17). "X-45A Unmanned Combat Vehicle on Display". Aerotech News and Review. 
  2. ^ The 50th flight: Two X-45s work autonomously as a group and successfully attack previously undetected targets
  3. ^ Boeing news release
  4. ^ "Boeing Receives First Engines for X-45C UCAV". Boeing, November 18, 2004.
  5. ^ "Boeing Awarded Additional $175 Million for Joint Unmanned Combat Air Systems Capability Demonstration Program". Boeing, July 11, 2005.
  6. ^ "J-UCAS ending", Aviation Week and Space Technology.
  7. ^ "Navy's UCAS program", Aviation Week and Space Technology.
  8. ^ article; Navy UCAS proposals", Aviation Week and Space Technology
  9. ^ "Winner to be selected in late 2007 or early 2008". Aviation Week and Space Technology.
  10. ^ "Navy awards UCAS-D contract to Northrop Grumman X-47 team
  11. ^ "F/A-18F approaches carrier autonomously, will soon land autonomously". Aviation Week and Space Technology
  12. ^ "Boeing's Phantom Ray - the 'Phoenix' of UCAVs". Aviation Week.
  13. ^ "Breaking: Boeing resurrects X-45C as 'Phantom Ray' testbed". Flight Global.
  14. ^ US Navy delays UCLASS RFP - Flightglobal.com, December 11, 2012
  15. ^ X-45 J-UCAV Joint Unmanned Combat Air System, specifications. airforce-technology.com
  16. ^ X-45 Joint Unmanned Combat Air System. Boeing.

External links

  • Boeing X-45 Site
  • X-45 Video Collection
  • NASA Dryden X-45A UCAV Photo Collection
  • First bombing run test is a success
  • X-45C information
  • Composites combat ready in UCAVs
  • Boeing X-45 / X-46 page on designation-systems.net
  • Photograph; X-45C unfinished prototype
  • X-45C/N computer-rendered images
  • Boeing 'Phantom Eye' Hydrogen Powered Vehicle Takes Shape
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.