World Library  
Flag as Inappropriate
Email this Article

Bone metastasis

Article Id: WHEBN0022978380
Reproduction Date:

Title: Bone metastasis  
Author: World Heritage Encyclopedia
Language: English
Subject: Thyroid cancer, Radiation therapy, Prostate cancer, Astatine, Cancer
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Bone metastasis

Sclerotic breast cancer metastases in the pelvis.

Bone metastases, or metastatic bone disease, is a class of cancer metastases that results from primary tumor invasion to bone. Bone-originating cancers like osteosarcoma, chondrosarcoma, and Ewing's sarcoma are rare.[1] And, unlike hematological malignancies that originate in the blood and form non-solid tumors, bone metastases generally arise from epithelial tumors and form a solid mass inside the bone. Bone metastases cause severe pain, characterized by a dull, constant ache with periodic spikes of incident pain.[2]

Sources of bone metastases

Main sites of metastases for some common cancer types, with lung and breast routes to bones shown at shoulder level. Prostate cancer, the third major source,[3] is not shown because of female model. Primary cancers are denoted by "...cancer" and their main metastasis sites are denoted by "...metastases".[4]
Example of a bone metastasis, showing location and appearance

Bone is one of the most common locations for metastasis.[5] While any type of cancer is capable of forming metastatic tumors within bone, the microenvironment of the marrow tends to favor particular types of cancer, including prostate, breast, and lung cancers.[3] Particularly in prostate cancer, bone metastases tend to be the only site of metastasis.[2]

Phenotypes

Under normal conditions, bone undergoes a continuous remodeling through osteoclast-mediated bone resorption and osteoblast-mediated bone deposition.[3] These processes are normally tightly regulated within bone to maintain bone structure and calcium homeostasis in the body. Disregulation of these processes by tumor cells leads to either osteoblastic or osteolytic phenotypes.[3] Regardless of the phenotype, though, bone metastases show osteoclast proliferation and hypertrophy.[6]

Symptoms

Bone metastases are a major clinical concern that can cause severe pain, bone fractures, spinal cord compression, hypercalcemia, anemia, spinal instability, decreased mobility, and rapid degradation in the quality of life for patients.[5][7] Patients have described the pain as a dull ache that grows worse over time, with intermittent periods of sharp, jagged pain.[2] Even under controlled pain management, these periods of breakthrough pain can occur rapidly, without warning, several times a day.[8]

Effects of bone metastasis

Causes of symptoms

Acidosis

Acidosis is the increased acidity in a given location, whether it is blood, urine, or tissues. Osteoclasts generate extracellular protons, lowering the pH of the extracellular matrix (ECM) around the osteoclast to approximately 4.5.[9] Nociceptors in the bone trigger a pain response in the brain in response to this acidosis.[10] It is thought that this is the primary source of the dull, chronic pain experienced by patients with bone metastasis.

Bone restructuring

The uncoupled regulation of the osteoclasts and osteoblasts leads to malformation of the bone.[2] Malformed bones are unable to withstand the normal mechanical stresses placed on them in day-to-day activity, leading to fractures, spinal compression, and spinal instability. Malformed bones may also mechanically trigger pain receptors both within the bone and in the surrounding tissue.

Treatment

The traditional treatments for cancer are Radiotherapy and chemotherapy, usually in combination with one another. Scientists and pharmaceutical companies are researching drugs to target different types of cancer, including metastatic bone disease.

High-intensity focused ultrasound (HIFU) has CE approval for palliative care for bone metastasis. As an entirely side-effect free and non-invasive treatment, HIFU has been successfully applied in the treatment of cancer to destroy tumours of the bone, brain, breast, liver, pancreas, rectum, kidney, testes, and prostate. HIFU treatments are still in investigatory phases as more information is needed to study effectiveness in order to obtain full approval in countries such as the USA. In China HIFU has CDFA approval since 2001 and over 180 treatment centres have been established in China, Hong Kong, and Korea. It is expected that HIFU may become one of the fastest, most effective, and safest methods to treat some cancers. No anesthetic is required. The focused hyperthermia response of body tissue to HIFU is easily guided using MRI to yield a very precise technique.

One treatment that has been considered is bisphosphonates. Bisphosphonates have shown great promise in reducing bone cancer pain, bone destruction, and tumor growth.[11] However, they have exhibited side effect such as the induction of arthralgias and osteonecrosis of the jaw.[12]

Monthly injections of radium-223 chloride (as Xofigo, formerly called Alpharadin) have been approved by the FDA in May 2013 for castration-resistant prostate cancer (CRPC) with bone metastases.

Pain management

The pain ladder was designed for the management of cancer-associated pain, and mainly involves various strength of opioids.

Other treatments include bisphosphonates, corticosteroids, radiotherapy, and radionucleotides.[2] Percutaneous osteoplasty involves the use of bone cement to reduce pain and improve mobility.[13]

In palliative therapy, the main options are external radiation and radiopharmaceuticals.[14]

See also

References

  1. ^ MedlinePlus Overview bonecancer
  2. ^ a b c d e Jimenez-Andrade JM, Mantyh WG, Bloom AP, Ferng AS, Geffre CP, Mantyh PW (June 2010). "Bone cancer pain". Annals of the New York Academy of Sciences 1198: 173–81.  
  3. ^ a b c d Guise T (October 2010). "Examining the metastatic niche: targeting the microenvironment". Semin. Oncol. 37 (Suppl 2): S2–14.  
  4. ^ List of included entries and references is found on main image page in Commons:
  5. ^ a b Coleman RE (October 2006). "Clinical features of metastatic bone disease and risk of skeletal morbidity". Clin. Cancer Res. 12 (20 Pt 2): 6243s–9s.  
  6. ^ Halvorson KG, Sevcik MA, Ghilardi JR, Rosol TJ, Mantyh PW (September 2006). "Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer". Clin J Pain 22 (7): 587–600.  
  7. ^ Mercadante S (January 1997). "Malignant bone pain: pathophysiology and treatment". Pain 69 (1-2): 1–18.  
  8. ^ Zeppetella G (March 2009). "Impact and management of breakthrough pain in cancer". Current Opinion in Supportive and Palliative Care 3 (1): 1–6.  
  9. ^ Teitelbaum SL (February 2007). "Osteoclasts: what do they do and how do they do it?". Am. J. Pathol. 170 (2): 427–35.  
  10. ^ Julius D, Basbaum AI (September 2001). "Molecular mechanisms of nociception". Nature 413 (6852): 203–10.  
  11. ^ Lipton A (2008). "Emerging role of bisphosphonates in the clinic—antitumor activity and prevention of metastasis to bone". Cancer Treat. Rev. 34 (Suppl 1): S25–30.  
  12. ^ Drake MT, Clarke BL, Khosla S (September 2008). "Bisphosphonates: mechanism of action and role in clinical practice". Mayo Clin. Proc. 83 (9): 1032–45.  
  13. ^ Anselmetti, Giovanni Carlo (June 2010). "Osteoplasty: Percutaneous Bone Cement Injection beyond the Spine". US National Library of Medicine: National Institutes of Health.  
  14. ^ Criteria for Palliation of Bone Metastases – Clinical Applications from International Atomic Energy Agency. Retrieved November 2011

Further reading

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.