World Library  
Flag as Inappropriate
Email this Article

Bousso's holographic bound

Article Id: WHEBN0030471415
Reproduction Date:

Title: Bousso's holographic bound  
Author: World Heritage Encyclopedia
Language: English
Subject: Quantum gravity, Holographic principle, IR/UV mixing, CGHS model, Eternal inflation
Publisher: World Heritage Encyclopedia

Bousso's holographic bound

A simple generalization of the black hole entropy bound (cf. holographic principle) to generic systems is that, in quantum gravity, the maximum entropy which can be enclosed by a spatial boundary is given by a quarter of its surface area. However, as a general rule, this simple generalization appears to be false, because the spatial boundary can be taken to be within the event horizon of a black hole. It also fails in cosmological models.

Raphael Bousso came up with a modification that the spatial boundary should not be a trapped surface. This led him to come up with Bousso's holographic bound,[1][2][3] also known as the covariant entropy bound. Basically, a spatial boundary is valid if, when one considers both null sheets orthogonal to its tangent space, the expansion factors both point in the same direction. This defines inside and outside. The entropy of the interior region is bounded by the surface area of the boundary.


  1. ^
  2. ^
  3. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.