World Library  
Flag as Inappropriate
Email this Article

Breusch–Godfrey test

Article Id: WHEBN0017097662
Reproduction Date:

Title: Breusch–Godfrey test  
Author: World Heritage Encyclopedia
Language: English
Subject: Trevor S. Breusch, Autocorrelation, Statistics, List of statistics articles, Statistical tests
Collection: Regression Diagnostics, Regression with Time Series Structure, Statistical Tests
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Breusch–Godfrey test

In statistics, the Breusch–Godfrey test, named after Trevor S. Breusch and Leslie G. Godfrey,[1][2] is used to assess the validity of some of the modelling assumptions inherent in applying regression-like models to observed data series. In particular, it tests for the presence of serial dependence that has not been included in a proposed model structure and which, if present, would mean that incorrect conclusions would be drawn from other tests, or that sub-optimal estimates of model parameters are obtained if it is not taken into account. The regression models to which the test can be applied include cases where lagged values of the dependent variables are used as independent variables in the model's representation for later observations. This type of structure is common in econometric models. A similar assessment can be also carried out with the Durbin–Watson test.

Because the test is based on the idea of Lagrange multiplier testing, it is sometimes referred to as LM test for serial correlation.[3]

Contents

  • Background 1
  • Procedure 2
  • Software 3
  • See also 4
  • References 5
  • Further reading 6

Background

The Breusch–Godfrey serial correlation LM test is a test for autocorrelation in the errors in a regression model. It makes use of the residuals from the model being considered in a regression analysis, and a test statistic is derived from these. The null hypothesis is that there is no serial correlation of any order up to p.[4]

The test is more general than the Durbin–Watson statistic (or Durbin's h statistic), which is only valid for nonstochastic regressors and for testing the possibility of a first-order autoregressive model (e.g. AR(1)) for the regression errors. The BG test has none of these restrictions, and is statistically more powerful than Durbin's h statistic.

Procedure

Consider a linear regression of any form, for example

Y_t = \alpha_0+ \alpha_1 X_{t,1} + \alpha_2 X_{t,2} + u_t \,

where the residuals might follow an AR(p) autoregressive scheme, as follows:

u_t = \rho_1 u_{t-1} + \rho_2 u_{t-2} + \cdots + \rho_p u_{t-p} + \varepsilon_t. \,

The simple regression model is first fitted by ordinary least squares to obtain a set of sample residuals \hat{u}_t.

Breusch and Godfrey proved that, if the following auxiliary regression model is fitted

\hat{u}_t = \alpha_0 + \alpha_1 X_{t,1} + \alpha_2 X_{t,2} + \rho_1 \hat{u}_{t-1} + \rho_2 \hat{u}_{t-2} + \cdots + \rho_p \hat{u}_{t-p} + \varepsilon_t \,

and if the usual R^2 statistic is calculated for this model, then the following asymptotic approximation can be used for the distribution of the test statistic

n R^2\,\sim\,\chi^2_p, \,

when the null hypothesis {H_0: \lbrace \rho_i = 0 \text{ for all } i \rbrace } holds (that is, there is no serial correlation of any order up to p). Here n is the number of data-points available for the second regression, that for \hat{u}_t,

n=T-p, \,

where T is the number of observations in the basic series. Note that the value of n depends on the number of lags of the error term (p).

Software

  • In R, this test is performed by function bgtest, available in package lmtest.[5][6]
  • In Stata, this test is performed by the command estat bgodfrey.[7][8]
  • In SAS, the GODFREY option of the MODEL statement in PROC AUTOREG provides a version of this test.
  • In Python Statsmodels, the acorr_breush_godfrey function in the module statsmodels.stats.diagnostic [9]

See also

References

  1. ^
  2. ^
  3. ^
  4. ^ Macrodados 6.3 Help – Econometric Tools
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^ Breusch-Godfrey test in Python http://statsmodels.sourceforge.net/devel/generated/statsmodels.stats.diagnostic.acorr_breush_godfrey.html?highlight=autocorrelation

Further reading

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.