World Library  
Flag as Inappropriate
Email this Article

Centrifuge

Article Id: WHEBN0000106284
Reproduction Date:

Title: Centrifuge  
Author: World Heritage Encyclopedia
Language: English
Subject: Timeline of the nuclear program of Iran, Geotechnical centrifuge modeling, Al Qa'qaa, Coconut oil, Washing machine
Collection: Centrifuges
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Centrifuge

A laboratory tabletop centrifuge. The rotating unit, called the rotor, has fixed holes drilled at an angle (to the vertical), visible inside the smooth silver rim. Sample tubes are placed in these slots and the motor is spun. As the centrifugal force is in the horizontal plane and the tubes are fixed at an angle, the particles have to travel only a little distance before they hit the wall of the tube and then slide down to the bottom. These angle rotors are very popular in the lab for routine use.

A centrifuge is a piece of equipment that puts an object in rotation around a fixed axis (spins it in a circle), applying a potentially strong force perpendicular to the axis of spin (outward). The centrifuge works using the sedimentation principle, where the centripetal acceleration causes denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and move to the center. In a laboratory centrifuge that uses sample tubes, the radial acceleration causes denser particles to settle to the bottom of the tube, while low-density substances rise to the top.[1]

There are 3 types of centrifuge designed for different applications. Industrial scale centrifuges are commonly used in manufacturing and waste processing to sediment suspended solids, or to separate immiscible liquids. An example is the cream separator found in dairies. Very high speed centrifuges and ultracentrifuges able to provide very high accelerations can separate fine particles down to the nano-scale, and molecules of different masses.

Large centrifuges are used to simulate high gravity or acceleration environments (for example, high-G training for test pilots). Medium-sized centrifuges are used in washing machines and at some swimming pools to wring water out of fabrics.

Gas centrifuges are used for isotope separation, such as to enrich nuclear fuel for fissile isotopes.

Contents

  • History 1
  • Types 2
  • Uses 3
    • Laboratory separations 3.1
    • Isotope separation 3.2
    • Aeronautics and astronautics 3.3
    • Geotechnical centrifuge modeling 3.4
    • Synthesis of materials 3.5
    • Commercial applications 3.6
  • Mathematical description 4
  • See also 5
  • References and notes 6
  • Further reading 7
  • External links 8

History

Early 20th-century advertising poster for a milk separator.

English military engineer Benjamin Robins (1707–1751) invented a whirling arm apparatus to determine drag. In 1864, Antonin Prandtl proposed the idea of a dairy centrifuge to separate cream from milk. The idea was subsequently put into practice by his brother, Alexander Prandtl, who made improvements to his brother's design, and exhibited a working butterfat extraction machine in 1875.[2]

Types

A centrifuge machine can be described as a machine with a rapidly rotating container that applies centrifugal force to its contents. There are multiple types of centrifuge, which can be classified by intended use or by rotor design:

Types by rotor design:[3][4][5][6]

  • Fixed-angle centrifuges are designed to hold the sample containers at a constant angle relative to the central axis.
  • Swinging head (or swinging bucket) centrifuges, in contrast to fixed-angle centrifuges, have a hinge where the sample containers are attached to the central rotor. This allows all of the samples to swing outwards as the centrifuge is spun.
  • Continuous tubular centrifuges do not have individual sample vessels and are used for high volume applications.

Types by intended use:

Industrial centrifuges may otherwise be classified according to the type of separation of the high density fraction from the low density one:

Uses

Laboratory separations

A wide variety of laboratory-scale centrifuges are used in chemistry, biology, biochemistry and clinical medicine for isolating and separating suspensions and immiscible liquids. They vary widely in speed, capacity, temperature control, and other characteristics. Laboratory centrifuges often can accept a range of different fixed-angle and swinging bucket rotors able to carry different numbers of centrifuge tubes and rated for specific maximum speeds. Controls vary from simple electrical timers to programmable models able to control acceleration and deceleration rates, running speeds, and temperature regimes. Ultracentrifuges spin the rotors under vacuum, eliminating air resistance and enabling exact temperature control. Zonal rotors and continuous flow systems are capable of handing bulk and larger sample volumes, respectively, in a laboratory-scale instrument.[1]

Isotope separation

Other centrifuges, the first being the Zippe-type centrifuge, separate isotopes, and these kinds of centrifuges are in use in nuclear power and nuclear weapon programs.

Gas centrifuges are used in uranium enrichment. The heavier isotope of uranium (uranium-238) in the uranium hexafluoride gas tends to concentrate at the walls of the centrifuge as it spins, while the desired uranium-235 isotope is extracted and concentrated with a scoop selectively placed inside the centrifuge. It takes many thousands of centrifugations to enrich uranium enough for use in a nuclear reactor (around 3.5% enrichment), and many thousands more to enrich it to weapons-grade (above 90% enrichment) for use in nuclear weapons.

Aeronautics and astronautics

The 20 G centrifuge at the NASA Ames Research Center

Human centrifuges are exceptionally large centrifuges that test the reactions and tolerance of pilots and astronauts to acceleration above those experienced in the Earth's gravity.

The US Air Force at Holloman Air Force Base, New Mexico operates a human centrifuge. The centrifuge at Holloman AFB is operated by the aerospace physiology department for the purpose of training and evaluating prospective fighter pilots for high-g flight in Air Force fighter aircraft.[7]

The use of large centrifuges to simulate a feeling of gravity has been proposed for future long-duration space missions. Exposure to this simulated gravity would prevent or reduce the bone decalcification and muscle atrophy that affect individuals exposed to long periods of freefall.[7][8]

The first centrifuges used for human research were used by Erasmus Darwin, the grandfather of Charles Darwin. The first largescale human centrifuge designed for Aeronautical training was created in Germany in 1933.[9]

Geotechnical centrifuge modeling

Geotechnical centrifuge modeling is used for physical testing of models involving soils. Centrifuge acceleration is applied to scale models to scale the gravitational acceleration and enable prototype scale stresses to be obtained in scale models. Problems such as building and bridge foundations, earth dams, tunnels, and slope stability, including effects such as blast loading and earthquake shaking.[10]

Synthesis of materials

High gravity conditions generated by centrifuge is applied in the chemical industry, casting, and material synthesis.[11][12][13][14] The convection and mass transfer are greatly affected by the gravitational condition.Researchers reported that the high-gravity level can effectively affect the phase composition and morphology of the products.[11]

Commercial applications

Sugar centrifugal machines, to separating sugar crystals from the crystallized syrup, or mother liquor.
  • Centrifuges with a batch weight of up to 2,200 kg per charge are used in the sugar industry to separate the sugar crystals from the mother liquor.[15]
  • Standalone centrifuges for drying (hand-washed) clothes – usually with a water outlet.
  • Washing machines
  • Centrifuges are used in the attraction Mission: SPACE, located at Epcot in Walt Disney World, which propels riders using a combination of a centrifuge and a motion simulator to simulate the feeling of going into space.
  • In soil mechanics, centrifuges utilize centrifugal acceleration to match soil stresses in a scale model to those found in reality.
  • Large industrial centrifuges are commonly used in water and wastewater treatment to dry sludges. The resulting dry product is often termed cake, and the water leaving a centrifuge after most of the solids have been removed is called centrate.
  • Large industrial centrifuges are also used in the oil industry to remove solids from the drilling fluid.
  • Disc-stack centrifuges used by some companies in the oil sands industry to separate small amounts of water and solids from bitumen
  • Centrifuges are used to separate cream (remove fat) from milk; see Separator (milk).

Mathematical description

Protocols for centrifugation typically specify the amount of acceleration to be applied to the sample, rather than specifying a rotational speed such as revolutions per minute. This distinction is important because two rotors with different diameters running at the same rotational speed will subject samples to different accelerations. During circular motion the acceleration is the product of the radius and the square of the angular velocity \omega, and the acceleration relative to "g" is traditionally named "relative centrifugal force" (RCF). The acceleration is measured in multiples of "g" (or × "g"), the standard acceleration due to gravity at the Earth's surface, a dimensionless quantity given by the expression:

A 19th-century hand cranked laboratory centrifuge.
\text{RCF} = \frac{r \omega^2}{g}

where

\textstyle g is earth's gravitational acceleration,
\textstyle r is the rotational radius,
\omega is the angular velocity in radians per unit time

This relationship may be written as

\text{RCF} = 1.11824396\, \times 10^{-6}\, r_\text{mm} \, N_\text{RPM}^2

where

\textstyle r_\text{mm} is the rotational radius measured in millimeters (mm), and
\textstyle N_\text{RPM} is rotational speed measured in revolutions per minute (RPM).

To avoid having to perform a mathematical calculation every time, one can find nomograms for converting RCF to rpm for a rotor of a given radius. A ruler or other straight edge lined up with the radius on one scale, and the desired RCF on another scale, will point at the correct rpm on the third scale.[16] Based on automatic rotor recognition, modern centrifuges have a button for automatic conversion from RCF to rpm and vice versa.

See also

References and notes

  1. ^ a b Susan R. Mikkelsen & Eduardo Cortón. Bioanalytical Chemistry, Ch. 13. Centrifugation Methods. John Wiley & Sons, Mar 4, 2004, pp. 247-267.
  2. ^ Vogel-Prandtl,Johanna Ludwig Prandtl: A Biographical Sketch, Remembrances and Documents, English trans. V. Vasanta Ram. The International Centre for Theoretical Physics Trieste, Italy, pub. August 14, 2004. pp. 10-11.
  3. ^ "Basics of Centrifugation". Cole-Parmer. Retrieved 11 March 2012. 
  4. ^ "Plasmid DNA Separation: Fixed-Angle and Vertical Rotors in the Thermo Scientific Sorvall Discovery™ M120 & M150 Microultracentrifuges" (Thermo Fischer publication)
  5. ^ http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4250119/lectures/1._instr.pdf
  6. ^ Heidcamp, Dr. William H. "Appendix F". Cell Biology Laboratory Manual. Gustavus Adolphus College,. Retrieved 11 March 2012. 
  7. ^ a b "The Pull of HyperGravity - A NASA researcher is studying the strange effects of artificial gravity on humans.". NASA. Retrieved 11 March 2012. 
  8. ^ Hsu, Jeremy. "New Artificial Gravity Tests in Space Could Help Astronauts". Space.com. Retrieved 11 March 2012. 
  9. ^ http://www.dtic.mil/dtic/tr/fulltext/u2/a236267.pdf
  10. ^ C. W. W. Ng, Y. H. Wang, L. M. Zhang (2006). Physical Modelling in Geotechnics: proceedings of the Sixth International Conference on Physical Modelling in Geotechnics. Taylor & Francis. p. 135.  
  11. ^ a b Yin, Xi; Chen, Kexin; Zhou, Heping; Ning, Xiaoshan (August 2010). "Combustion Synthesis of Ti3SiC2/TiC Composites from Elemental Powders under High-Gravity Conditions". Journal of the American Ceramic Society 93 (8): 2182–2187.  
  12. ^ Mesquita, R.A.; Leiva, D.R.; Yavari, A.R.; Botta Filho, W.J. (April 2007). "Microstructures and mechanical properties of bulk AlFeNd(Cu,Si) alloys obtained through centrifugal force casting". Materials Science and Engineering: A. 452-453: 161–169.  
  13. ^ Chen, Jian-Feng; Wang, Yu-Hong; Guo, Fen; Wang, Xin-Ming; Zheng, Chong (April 2000). "Synthesis of Nanoparticles with Novel Technology: High-Gravity Reactive Precipitation". Industrial & Engineering Chemistry Research 39 (4): 948–954.  
  14. ^ Abe, Yoshiyuki; Maizza, Giovanni; Bellingeri, Stefano; Ishizuka, Masao; Nagasaka, Yuji; Suzuki, Tetsuya (January 2001). "Diamond synthesis by high-gravity d.c. plasma cvd (hgcvd) with active control of the substrate temperature". Acta Astronautica 48 (2-3): 121–127.  
  15. ^ article on centrifugal controls, retrieved on June 5, 2010
  16. ^ Nomogram example

Further reading

  • Modeling flow liquefaction, its mitigation, and comparison with centrifuge tests, et al.Naesgaard

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.