World Library  
Flag as Inappropriate
Email this Article

Chemical oxygen iodine laser

Article Id: WHEBN0003098704
Reproduction Date:

Title: Chemical oxygen iodine laser  
Author: World Heritage Encyclopedia
Language: English
Subject: Directed-energy weapon, Chemical laser, All gas-phase iodine laser, ElectricOIL, Hydrogen fluoride laser
Collection: American Inventions, Chemical Lasers
Publisher: World Heritage Encyclopedia

Chemical oxygen iodine laser

Chemical oxygen iodine laser, or COIL, is an infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode. Its output wavelength is 1.315 µm, a transition wavelength of atomic iodine.

The laser is fed with gaseous chlorine, molecular iodine, and an aqueous mixture of hydrogen peroxide and potassium hydroxide. The aqueous peroxide solution undergoes chemical reaction with chlorine, producing heat, potassium chloride, and oxygen in excited state, singlet delta oxygen. Spontaneous transition of excited oxygen to the triplet sigma ground state is forbidden giving the excited oxygen a spontaneous lifetime of about 45 minutes. This allows the singlet delta oxygen to transfer its energy to the iodine molecules injected to the gas stream; they are nearly resonant with the singlet oxygen, so the energy transfer during the collision of the particles is rapid. The excited iodine then undergoes stimulated emission and lases at 1.315 µm in the optical resonator region of the laser.

The laser operates at relatively low gas pressures, but the gas flow has to be nearing the speed of sound at the reaction time; even supersonic flow designs are described. The low pressure and fast flow make removal of heat from the lasing medium easy, in comparison with high-power solid-state lasers. The reaction products are potassium salt, water, and oxygen. Traces of chlorine and iodine are removed from the exhaust gases by a halogen scrubber.

COIL was developed by the US Air Force in 1977, for military purposes. However, its properties make it useful for industrial processing as well; the beam is focusable and can be transferred by an optical fiber, as its wavelength is not absorbed much by fused silica but is well absorbed by metals, making it suitable for laser cutting and drilling. Rapid cutting of stainless steel and hastelloy with a fiber-coupled COIL has been demonstrated.[1] In 1996, TRW Incorporated managed to get a continuous beam of hundreds of kilowatts of power that lasted for several seconds.

RADICL, Research Assessment, Device Improvement Chemical Laser, is a 20 kW COIL laser tested by the United States Air Force in around 1998.[2]

COIL is a component of the United States' military airborne laser and advanced tactical laser programs. On February 11, 2010, this weapon was successfully deployed to shoot down a missile off the central California coast in a test conducted with a laser aboard a Boeing 747 that took off from the Point Mugu Naval Air Warfare Center (for more details, see Boeing YAL-1.) [3]

All gas-phase iodine laser (AGIL) is a similar construction using all-gas reagents, more suitable for aerospace applications.

The ElectricOIL, or EOIL, offers the same iodine lasing species in an alternate gas-electric hybrid variant.

See also


  1. ^
  2. ^ (via Google cache)
  3. ^

External links

  • Popular Science: The Flying Laser Cannon
  • Patent for the 'High energy airborne chemical oxygen iodine laser (COIL)'
  • 'Laser jumbo' testing moves ahead
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.