Community Ecology

"Ecological community" redirects here. For human community organized around economic and ecological sustainability, see ecovillage.


In ecology, a community or biocoenosis is an assemblage or associations of populations of two or more different species occupying the same geographical area. The term community has a variety of uses. In its simplest form it refers to groups of organisms in a specific place or time, for example, "the fish community of Lake Ontario before industrialization".

Community ecologists study the interactions between species in communities on many spatial and temporal scales, including the distribution, structure, abundance, demography, and interactions between coexisting populations.[1] The primary focus of community ecology is on the interactions between populations as determined by specific genotypic and phenotypic characteristics. Community ecology has its origin in European plant sociology. Modern community ecology examines patterns such as variation in species richness, equitability, productivity and food web structure (see community structure); it also examines processes such as predator-prey population dynamics, succession, and community assembly.

On a deeper level the meaning and value of the community concept in ecology is up for debate. Communities have traditionally been understood on a fine scale in terms of local processes constructing (or destructing) an assemblage of species, such as the way climate change is likely to affect the make-up of grass communities.[2] Recently this local community focus has been criticised. Robert Ricklefs has argued that it is more useful to think of communities on a regional scale, drawing on evolutionary taxonomy and biogeography,[1] where some species or clades evolve and others go extinct.[3]

Interspecific interactions

Species interact in various ways: competition, predation, parasitism, mutualism, commensalism, etc. The organization of a biological community with respect to ecological interactions is referred to as community structure.

Competition

Species can compete with each other for finite resources. It is considered to be an important limiting factor of population size, biomass and species richness. Many types of competition have been described, but proving the existence of these interactions is a matter of debate. Direct competition has been observed between individuals, populations and species, but there is little evidence that competition has been the driving force in the evolution of large groups.[4]

  1. Interference competition: occurs when an individual of one species directly interferes with an individual of another species. Examples include a lion chasing a hyena from a kill, or a plant releasing allelopathic chemicals to impede the growth of a competing species.
  2. Exploitative competition: occurs via the consumption of resources. When an individual of one species consumes a resource (e.g., food, shelter, sunlight, etc.), that resource is no longer available to be consumed by a member of a second species. Exploitative competition is thought to be more common in nature, but care must be taken to distinguish it from apparent competition.
  3. Apparent competition: occurs when two species share a predator. The populations of both species can be depressed by predation without direct exploitative competition.[5]

Predation

Predation is hunting another species for food. This is a positive-negative (+ -) interaction in that the predator species benefits while the prey species is harmed. Some predators kill their prey before eating them (e.g., a hawk killing a mouse). Other predators are parasites that feed on prey while alive (e.g., a vampire bat feeding on a cow). Herbivores feed on plants (e.g., a cow grazing). Predation may affect the population size of predators and prey and the number of species coexisting in a community.

Mutualism

Mutualism is a symbiotic interaction between species in which both benefit. Examples include Rhizobium bacteria growing in nodules on the roots of legumes and insects pollinating the flowers of angiosperms.

Commensalism

Commensalism is a type of relationship among organisms in which one organism benefits while the other organism is neither benefited nor harmed. The organism that benefited is called the commensal while the other organism that is neither benefited nor harmed is called the host. For example, an epiphytic orchid attached to the tree for support benefits the orchid but neither harms nor benefits the tree. The opposite of commensalism is amensalism, an interspecific relationship in which a product of one organism has a negative effect on another organism. [6]

Community structure

A major research theme among community ecology has been whether ecological communities have a (nonrandom) structure and, if so, how to characterise this structure. Forms of community structure include aggregation[7] and nestedness.

See also

References

Further reading

  • Akin, Wallace E. (1991). Global Patterns: Climate, Vegetation, and Soils. University of Oklahoma Press. ISBN 0-8061-2309-5.
  • Barbour, Burke, and Pitts, 1987. Terrestrial Plant Ecology, 2nd ed. Cummings, Menlo Park, CA.
  • Morin, Peter J. (1999). Community Ecology. Wiley-Blackwell Press. ISBN 978-0-86542-350-3.
  • Odum, E. P. (1959) Fundamentals of ecology. W. B. Saunders Co., Philadelphia and London.
  • Ricklefs, R.E. (2005) The Economy of Nature, 6th ed. WH Freeman, USA.
  • Ricketts, Taylor H., Eric Dinerstein, David M. Olson, Colby J. Loucks et al. (WWF) (1999). Terrestrial Ecoregions of North America: a conservation assessment. Island Press. ISBN 1-55963-722-6.

External links

  • Community, BioMineWiki
  • Identify microbial species in a community, BioMineWiki
  • Glossary, Status and Trends of the Nation's Biological Resources, USGS.
  • Glossary, ENTRIX Environmental Consultants.

ar:علم البيئة الجماعي

da:Synøkologi et:sünökoloogia es:Sinecología fr:Synécologie it:Ecologia della comunità he:סינאקולוגיה ja:群集生態学 pl:Synekologia pt:Sinecologia ru:Синэкология uk:Синекологія ur:سماجی بیئیات

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.