World Library  
Flag as Inappropriate
Email this Article

Crosslinking of DNA

Article Id: WHEBN0008489099
Reproduction Date:

Title: Crosslinking of DNA  
Author: World Heritage Encyclopedia
Language: English
Subject: Platinum-based antineoplastic, DNA, Nucleic acid structure, Chemotherapy, Cell-cycle nonspecific antineoplastic agents
Collection: Dna
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Crosslinking of DNA

In genetics, crosslinking of DNA occurs when various exogenous or endogenous agents react with two different positions in the DNA. This can either occur in the same strand (intrastrand crosslink) or in the opposite strands of the DNA (interstrand crosslink). Crosslinks also occur between DNA and protein. DNA replication is blocked by crosslinks, which causes replication arrest and cell death if the crosslink is not repaired.

The RAD51 family plays a role in repair.[1]

Contents

  • Crosslinking agents 1
    • Exogenous 1.1
    • Endogenous 1.2
  • References 2
  • External links 3

Crosslinking agents

Exogenous

Alkylating agents such as 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine)) and nitrogen mustard which are used in chemotherapy can cross link with DNA at N7 position of guanine on the opposite strands forming interstrand crosslink.[2]

Cisplatin (cis-diamminedichloroplatinum(II)) and its derivatives forms DNA cross links as monoadduct, interstrand crosslink, intrastrand crosslink or DNA protein crosslink. Mostly it acts on the adjacent N-7 guanine forming 1, 2 intrastrand crosslink.[3][4]

DNA damage can be induced by ionizing radiation is similar to oxidative stress, and these lesions have been implicated in aging and cancer. Biological effects of single-base damage by radiation or oxidation, such as 8-oxoguanine and thymine glycol, have been extensively studied. Recently has the focus shifted to some of the more complex lesions. Tandem DNA lesions are formed at substantial frequency by ionizing radiation and metal-catalyzed H2O2 reactions. Under anoxic conditions, the predo-minant double-base lesion is a species in which C8 of guanine is linked to the 5-methyl group of an adjacent 3'-thymine (G[8,5- Me]T). [5]

Endogenous

  • Nitrous acid is formed in the stomach from dietary sources of nitrites. It induces formation of interstrand DNA crosslinks at the aminogroup of exocyclic N2 of guanine at CG sequences.
  • Reactive chemicals such as malondialdehyde which are formed endogenously as the product of lipid peroxidation. They create etheno adducts formed by aldehyde which undergo rearrangements to form crosslinks on opposite strands.[6]
  • Psoralens are natural compounds (furocoumarins) present in plants. These compounds get activated in the presence of UV - A. They form covalent adducts with pyrimidines. Covalent adducts are formed by linking 3, 4 (pyrone) or 4', 5’ (furan) edge of psoralen to 5, 6 double bond of thymine. Psoralens can form two types of monoadducts and one diadduct (an interstrand crosslink) reacting with thymine.[7] The crosslinking reaction by Psoralens targets TA sequences intercalating in DNA and linking one base of the DNA with the one below it. Psoralen adducts cause replication arrest and is used in the treatment of psoriasis and vitiligo.
  • Aldehydes such as acrolein and crotonaldehyde found in tobacco smoke or automotive exhaust can form DNA interstrand crosslinks in DNA. Guanine adducts of DNA can also react with protein. A Schiff base formation between protein and aldehyde causes this DNA protein interstrand link
  • Formaldehyde (HCHO) induces protein-DNA and protein-protein crosslinks, and is a common reagent of choice for molecular biology experiments.[8] These crosslinks may be reversed by incubation at 70°C.[9]

References

  1. ^ Gruver AM, Miller KA, Rajesh C, et al. (November 2005). "The ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C". Mutagenesis 20 (6): 433–40.  
  2. ^ Ali-Osman F, Rairkar A, Young P (January 1995). "Formation and repair of 1,3-bis-(2-chloroethyl)-1-nitrosourea and cisplatin induced total genomic DNA interstrand crosslinks in human glioma cells". Cancer Biochem. Biophys. 14 (4): 231–41.  
  3. ^ Poklar N, Pilch DS, Lippard SJ, Redding EA, Dunham SU, Breslauer KJ (July 1996). "Influence of cisplatin intrastrand crosslinking on the conformation, thermal stability, and energetics of a 20-mer DNA duplex". Proc. Natl. Acad. Sci. U.S.A. 93 (15): 7606–11.  
  4. ^ Rudd GN, Hartley JA, Souhami RL (1995). "Persistence of cisplatin-induced DNA interstrand crosslinking in peripheral blood mononuclear cells from elderly and young individuals". Cancer Chemother. Pharmacol. 35 (4): 323–6.  
  5. ^ LC Colis, P Raychaudhury, AK Basu (2008). "Mutational specificity of gamma-radiation-induced guanine-thymine and thymine-guanine intrastrand cross-links in mammalian cells and translesion synthesis past the guanine-thymine lesion by human DNA polymerase eta". Biochemistry 47 (6): 8070–8079.  
  6. ^ Mathews & Vanholde, Biochemistry, 2nd Edition. Benjamin Cummings Publication
  7. ^ Qi Wu, Laura A Christensen, Randy J Legerski & Karen M Vasquez, Mismatch repair participates in error-free processing of DNA interstrand crosslinks in human cells,EMBO reports 6, 6, 551–557 (2005).
  8. ^ Formaldehyde Crosslinking Experiments [1]]
  9. ^ Somashe Niranjanakumaria, Erika Lasdaa, Robert Brazasa, Mariano A. Garcia-Blanco. Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods. 2002 Feb;26(2):182-90. [2]

External links

  • PDB 1AIO - Interactive structure for cisplatin and DNA adduct formation
  • PDB 204D - Interactive structure for psoralen and crosslinked DNA
  • Psoralen Ultraviolet A Light Treatment [3]
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.