World Library  
Flag as Inappropriate
Email this Article

Dalton's law

Article Id: WHEBN0000066570
Reproduction Date:

Title: Dalton's law  
Author: World Heritage Encyclopedia
Language: English
Subject: Distillation, John Dalton, Diving physics, Combined gas law, Engineering thermodynamics
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Dalton's law

An illustration of Dalton's law using the gasses of air at sea level.

In chemistry and physics, Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of non-reacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.[1] This empirical law was observed by John Dalton in 1801 and is related to the ideal gas laws.

Mathematically, the pressure of a mixture of non-reactive gases can be defined as the summation

P_{\text{total}} = \sum_{i=1} ^ n {p_i}       or      P_{\text{total}} = p_1 +p_2 + \cdots + p_n

where p_{1},\ p_{2},\dots,\ p_{n} represent the partial pressure of each component.[1]

\ p_{i} =P_{\text{total}}y_i

where y_i is the mole fraction of the i-th component in the total mixture of n components .

The relationship below provides a way to determine the volume based concentration of any individual gaseous component

P_i =\frac{P_{\text{total}}C_i}{1,000,000}

where C_i is the concentration of the i-th component expressed in ppm.

Dalton's law is not strictly followed by real gases with deviations being considerably large at high pressures. Under such conditions the volume occupied by the molecules can become significant compared to the free space between them. In particular, the short average distances between molecules raises the intensity of intermolecular forces between gas molecules enough to substantially change the pressure exerted by them. Neither of those effects are considered by the ideal gas model.

References

  1. ^ a b Silberberg, Martin S. (2009). Chemistry : the molecular nature of matter and change (5th ed. ed.). Boston: McGraw-Hill. p. 206.  

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.