World Library  
Flag as Inappropriate
Email this Article

Gemology

Article Id: WHEBN0000060767
Reproduction Date:

Title: Gemology  
Author: World Heritage Encyclopedia
Language: English
Subject: Turquoise, Gemstone, Jewellery, Krüss Optronic, Diamond
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Gemology

A selection of gemstone pebbles made by tumbling rough rock with abrasive grit in a rotating drum. The biggest pebble here is 40 millimetres (1.6 in) long.

Gemology or gemmology is the science dealing with natural and artificial gems and gemstones.[1] It is considered a geoscience and a branch of mineralogy. Some jewelers are academically trained gemologists and are qualified to identify and evaluate gems.[2]

Background

Rudimentary education in gemology for jewelers and gemologists began in the nineteenth century, but the first qualifications were instigated after the National Association of Goldsmiths of Great Britain (NAG) set up a Gemmological Committee for this purpose in 1908. This committee matured into the Gemmological Association of Great Britain (also known as Gem-A), now an educational charity and accredited awarding body with its courses taught worldwide. The first US graduate of Gem-A's Diploma Course, in 1929, was Robert Shipley, who later established both the Gemological Institute of America and the American Gem Society. There are now several professional schools and associations of gemologists and certification programs around the world.

The first gemological laboratory serving the jewelry trade was established in London in 1925, prompted by the influx of the newly developed "cultured pearl" and advances in the synthesis of rubies and sapphires. There are now numerous gem labs around the world requiring ever more advanced equipment and experience to identify the new challenges - such as treatments to gems, new synthetics and other new materials.

Gemmological travel lab KA52KRS

It is often difficult to obtain an expert judgement from a neutral laboratory. Analysis and estimation in the gemstone trade usually have to take place on site. Professional gemologists and gemstone buyers use mobile laboratories, which pool all necessary instruments in a travel case. Such so-called travel labs even have their own current supply, which makes them independent from infrastructure. They are also suitable for gemological expeditions.

Gemstones are basically categorized based on their crystal structure, specific gravity, refractive index, and other optical properties, such as pleochroism. The physical property of "hardness" is defined by the non-linear Mohs scale of mineral hardness.

Gemologists study these factors while valuing or appraising cut and polished gemstones. Gemological microscopic study of the internal structure is used to determine whether a gem is synthetic or natural by revealing natural fluid inclusions or partially melted exogenous crystals that are evidence of heat treatment to enhance color.

The spectroscopic analysis of cut gemstones also allows a gemologist to understand the atomic structure and identify its origin, which is a major factor in valuing a gemstone. For example, a ruby from Burma will have definite internal and optical activity variance from a Thai ruby.

When the gemstones are in a rough state, the gemologist studies the external structure; the host rock and mineral association; and natural and polished color. Initially, the stone is identified by its color, refractive index, optical character, specific gravity, and examination of internal characteristics under magnification.

General identification of gems

Gem identification is basically a process of elimination. Gemstones of similar color undergo non-destructive optical testing until there is only one possible identity. Any single test is indicative, only. For example, the specific gravity of ruby is 4.00, glass is 3.15–4.20, and cubic zirconia is 5.6–5.9. So one can easily tell the difference between cubic zirconia and the other two; however, there is overlap between ruby and glass.

And, as with all naturally occurring materials, no two gems are identical. The geological environment they are created in influences the overall process so that although the basics can be identified, the presence of chemical "impurities" and substitutions along with structural imperfections create "individuals".

Identification by refractive index

Traditional handheld refractometer

One test to determine the gem's identity is to measure the refraction of light in the gem. Every material has a critical angle, at which point light is reflected back internally. This can be measured and thus used to determine the gem's identity. Typically this is measured using a refractometer, although it is possible to measure it using a microscope.

Identification by specific gravity

Specific gravity, also known as relative density, varies depending upon the chemical composition and crystal structure type. Heavy liquids with a known specific gravity are used to test loose gemstones.

Specific gravity is measured by comparing the weight of the gem in air with the weight of the gem suspended in water.

Identification by spectroscopy

This method uses a similar principle to how a prism works to separate white light into its component colors. A gemological spectroscope is employed to analyze the selective absorption of light in the gem material. Essentially, when light passes from one medium to another, it bends. Blue light bends more than red light. How much the light bends will vary depending on the gem material. Coloring agents or chromophores show bands in the spectroscope and indicate which element is responsible for the gem's color.

Institutes, laboratories, schools and publications

References

  1. ^ "Dictionary". Retrieved 2009-11-08. 
  2. ^ "Web reference". Retrieved 2009-11-08. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.