Global element

In category theory, a global element of an object A from a category is a morphism

h : 1 → A,

where 1 is a terminal object of the category. Roughly speaking, global elements are a generalization of the notion of “elements” from the category of sets, and they can be used to import set-theoretic concepts into category theory. However, unlike a set, an object of a general category need not be determined by its global elements (not even up to isomorphism). For example the terminal object of the category Grph of graphs has one vertex and one edge, a self-loop, whence the global elements of a graph are its self-loops, conveying no information either about other kinds of edges, or about vertices having no self-loop, or about whether two self-loops share a vertex.

In an elementary topos the global elements of the subobject classifier Ω form a Heyting algebra when ordered by inclusion of the corresponding subobjects of the terminal object. For example Grph happens to be a topos, whose subobject classifier Ω is a two-vertex directed clique with an additional self-loop (so five edges, three of which are self-loops and hence the global elements of Ω). The internal logic of Grph is therefore based on the three-element Heyting algebra as its truth values.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.