World Library  
Flag as Inappropriate
Email this Article

Interpolation (computer graphics)

Article Id: WHEBN0008481883
Reproduction Date:

Title: Interpolation (computer graphics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Inbetweening, History of computer animation
Collection: Interpolation, Splines (Mathematics)
Publisher: World Heritage Encyclopedia

Interpolation (computer graphics)

In the context of computer animation, interpolation is inbetweening, or filling in frames between the key frames. It typically calculates the in between frames through use of (usually) piecewise polynomial interpolation to draw images semi-automatically.

For all applications of this type, a set of "key points" is defined by the graphic artist. These are values that are rather widely separated in space or time, and represent the desired result, but only in very coarse steps. The computed interpolation process is then used to insert many new values in between these key points to give a "smoother" result.

In its simplest form, this is the drawing of two-dimensional curves. The key points, placed by the artist, are used by the computer algorithm to form a smooth curve either through, or near these points. For a typical example of 2-D interpolation through key points see cardinal spline. For examples which go near key points see nonuniform rational B-spline, or Bézier curve. This is extended to the forming of three-dimensional curves, shapes and complex, dynamic artistic patterns such as used in laser light shows.

The process can be extended to motions. The path of an object can be interpolated by providing some key locations, then calculating many in between locations for a smooth motion. In addition to position, the speed or velocity, as well as accelerations along a path, can be calculated to mimic real-life motion dynamics. Where the subjects are too large or complex to move, the camera position and orientation can be moved by this process. This last is commonly called motion control.

Going further, orientations (rotations) of objects and parts of objects can be interpolated as well as parts of complete characters. This process mimics that used in early cartoon films. Master animators would draw key frames of the film, then, junior animators would draw the in-between frames. This is called inbetweening or tweening and the overall process is called "key frame animation". To make these motions appear realistic, interpolation algorithms have been sought which follow, or approximate real life motion dynamics. This applies to things such as the motion of arms and legs from frame to frame, or the motion of all parts of a face, given the motion of the important, key points of the face. Defining the motion of key strands of hair, spread around an animal, can be made into full fur. Using custom algorithms, motions with unique, unnatural and entertaining visual characteristics can be formed. The color of an object can be defined by key color-locations or frames allowing the computation of smooth color gradients around an object or varying in time. Algorithms such as the Kochanek–Bartels spline provide additional adjustment parameters which allow customizing the in-between behavior to suit a wide variety of situations. The article on tweening currently demonstrates several of these.

Another important area of this subject is the computational burden of these algorithms. Algorithms with faster execution times are sought to produce more of these results in less time in order to complete these projects quicker. As the resolution increases to produce animated feature films, the amount of processing can increase greatly.

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.