World Library  
Flag as Inappropriate
Email this Article

Kcnk2

Article Id: WHEBN0014795126
Reproduction Date:

Title: Kcnk2  
Author: World Heritage Encyclopedia
Language: English
Subject: General anaesthetic, Potassium channel, Stretch-activated ion channel, Tandem pore domain potassium channel, Mechanosensitive ion channel
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Kcnk2

Potassium channel, subfamily K, member 2
Identifiers
KCNK2 Gene
RNA expression pattern

Potassium channel subfamily K member 2 is a protein that in humans is encoded by the KCNK2 gene.[1][2][3]

This gene encodes K2P2.1, one of the members of the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that leaks potassium out of the cell to control resting membrane potential. The channel can be opened, however, by certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.[3]

Function in neurons

Another name for this channel is TREK-1. TREK-1 is part of the subfamily of mechano-gated potassium channels that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.[4] The C-terminal of TREK-1 channels plays a role in the mechanosensitivity of the channels.[5]

In the neurons of the central nervous system, TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in electrogenesis, ischemia, and anesthesia. TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal chord ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.[6]

In the absence of a properly functioning cytoskeleton, TREK-1 channels can still open via mechanical gating.[7] The cell membrane functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.[8] The insertion of certain compounds into the membrane is thought to mediate the opening of TREK-1 by forming a curve in the membrane.[9]

See also

References

Further reading

External links

  • Medical Subject Headings (MeSH)

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.