World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0028913346
Reproduction Date:

Title: Lirequinil  
Author: World Heritage Encyclopedia
Language: English
Subject: Alcoholic beverage, Propylbarbital, Petrichloral, JM-1232, Nitromethaqualone
Collection: Gabaa Receptor Positive Allosteric Modulators, Sedatives
Publisher: World Heritage Encyclopedia


Systematic (IUPAC) name
Clinical data
Legal status
CAS number  YesY
ATC code None
ChemSpider  N
Chemical data
Formula C26H25ClN2O3 
Mol. mass 448.941 g/mol

Lirequinil (Ro41-3696) is a nonbenzodiazepine hypnotic drug which binds to benzodiazepine sites on the GABAA receptor. In human clinical trials, lirequinil was found to have similar efficacy to zolpidem, with less side effects such as clumsiness and memory impairment. However it was also much slower acting than zolpidem, with peak plasma concentrations not reached until 2.5 hours after oral administration, and its O-desethyl metabolite Ro41-3290 is also active with a half-life of 8 hours.[1][2][3][4] This meant that while effective as a hypnotic, lirequinil failed to prove superior to zolpidem due to producing more next-day sedation, and it has not been adopted for clinical use. It was developed by a team at Hoffmann-La Roche in the 1990s.[5]

Active metabolite Ro41-3290


  1. ^ Dingemanse J, Bury M, Roncari G, Zell M, Gieschke R, Gaillard AW, Odink J, van Brummelen P (August 1995). "Pharmacokinetics and pharmacodynamics of Ro 41-3696, a novel nonbenzodiazepine hypnotic". Journal of Clinical Pharmacology 35 (8): 821–9.  
  2. ^ Dingemanse J, Bury M, Bock J, Joubert P (November 1995). "Comparative pharmacodynamics of Ro 41-3696, a new hypnotic, and zolpidem after night-time administration to healthy subjects". Psychopharmacology 122 (2): 169–74.  
  3. ^ Dingemanse J, Bury M, Hussain Y, van Giersbergen P (December 2000). "Comparative tolerability, pharmacodynamics, and pharmacokinetics of a metabolite of a quinolizinone hypnotic and zolpidem in healthy subjects". Drug Metabolism and Disposition: the Biological Fate of Chemicals 28 (12): 1411–6.  
  4. ^ Dingemanse J, Pedrazzetti E, van Giersbergen PL (2001). "Multiple-dose tolerability, pharmacodynamics, and pharmacokinetics of the quinolizinone hypnotic Ro 41-3696 in elderly subjects". Clinical Neuropharmacology 24 (2): 82–90.  
  5. ^ US Patent 5561233 Process for the preparation of an intermediate of a benzo[a]quinolizinone derivative

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.