World Library  
Flag as Inappropriate
Email this Article

Mammalian diving reflex

Article Id: WHEBN0000446596
Reproduction Date:

Title: Mammalian diving reflex  
Author: World Heritage Encyclopedia
Language: English
Subject: Blood shift, Cold shock response, Reflex, Drowning, Dousing
Collection: Cardiovascular Physiology, Diving Medicine, Reflexes
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Mammalian diving reflex

The mammalian diving reflex is a reflex in mammals which optimizes respiration to allow staying underwater for extended periods of time. It is exhibited strongly in aquatic mammals (seals,[1] otters, dolphins, etc.), but exists in weaker versions in other mammals, including humans, in particular babies up to 6 months old (see Infant swimming). Diving birds, such as penguins, have a similar diving reflex. Every animal's diving reflex is triggered specifically by cold water contacting the face.[2]

Contents

  • Effect 1
  • Medical application 2
  • Examples in fiction 3
  • See also 4
  • References 5
  • External links 6

Effect

Upon initiation of the reflex, three changes happen to a body, in this order:

  1. Bradycardia is the first response to submersion. Immediately upon facial contact with cold water, the human heart rate slows down ten to twenty-five percent.[2] Seals experience changes that are even more dramatic, going from about 125 beats per minute to as low as 10 on an extended dive.[1][3] Slowing the heart rate lessens the need for bloodstream oxygen, leaving more to be used by other organs.
  2. Next, peripheral vasoconstriction sets in. When under high pressure induced by deep diving, capillaries in the extremities start closing off, stopping blood circulation to those areas. Note that vasoconstriction usually applies to arterioles, but in this case is completely an effect of the capillaries. Toes and fingers close off first, then hands and feet, and ultimately arms and legs stop allowing blood circulation, leaving more blood for use by the heart and brain. Human musculature accounts for only 12% of the body's total oxygen storage, and the body's muscles tend to suffer cramping during this phase. Aquatic mammals have as much as 25 to 30% of their oxygen storage in muscle, and thus they can keep working long after capillary blood supply is stopped.
  3. Last is the [4] Blood freely flows back into the extremities as the diver heads back to the surface. This stage of the diving reflex has been observed in humans (such as accomplished freediver Bret Gilliam) during deep (over 90 metres or 300 ft) dives.[5] An incorrect impression exists among some that during the blood shift, blood and plasma pass freely throughout the thoracic cavity and into the alveoli. This is not normal, but rather a type of lung barotrauma. Blood in the alveoli is called pulmonary edema, and is dangerous at best and deadly at worst.

Thus, both a conscious and an unconscious person can survive longer without oxygen under cold water than in a comparable situation on dry land. Children tend to survive longer than adults when deprived of oxygen underwater. The exact mechanism for this effect has been debated and may be a result of brain cooling similar to the protective effects seen in patients treated with deep hypothermia.[6][7]

When the face is submerged, receptors that are sensitive to cold within the nasal cavity and other areas of the face supplied by the fifth (V) cranial nerve (the trigeminal nerve) relay the information to the brain and then innervate cranial nerve X (the vagus nerve), which is part of the autonomic nervous system. This causes bradycardia and peripheral vasoconstriction. Blood is diverted from the limbs and all organs but the heart and the brain, creating a heart–brain circuit and allowing the mammal to conserve oxygen.

In humans, the mammalian diving reflex is not induced when limbs are introduced to cold water. Mild bradycardia is caused by subjects holding their breath without submerging the face within water.[6] When breathing with face submerged this causes a diving reflex which increases proportionally to decreasing water temperature.[2] Activating the diving reflex with cold water can be used to treat supraventricular tachycardia.[8] However the greatest bradycardia effect is induced when the subject is holding breath with face submerged.

Medical application

The diving reflex is used in clinical practice of pediatrics as a means to treat supraventricular tachycardia. This is an example of a vagal maneuver, whereby the vagus nerve is stimulated in order to block the atrioventricular node, which interrupts the abnormal electrical circuit taking place in a supraventricular tachycardia.[7] This is especially useful in infants. A towel soaked in ice-cold water may be applied to the 'snout' region of the face. In children, the valsalva maneuver or carotid sinus massage is more appropriate.[9]

Examples in fiction

See also

References

  1. ^ a b Zapol WM, Hill RD, Qvist J, Falke K, Schneider RC, Liggins GC, Hochachka PW (September 1989). "Arterial gas tensions and hemoglobin concentrations of the freely diving Weddell seal". Undersea Biomed Res 16 (5): 363–73.  
  2. ^ a b c Speck DF, Bruce DS (March 1978). "Effects of varying thermal and apneic conditions on the human diving reflex". Undersea Biomed Res 5 (1): 9–14.  
  3. ^ Thornton SJ, Hochachka PW (2004). "Oxygen and the diving seal". Undersea Hyperb Med 31 (1): 81–95.  
  4. ^ Peter Lindholm, Claes EG Lundgren. "Journal of Appied Physiology - The physiology and pathophysiology of human breath-hold diving". Retrieved 4 April 2015. 
  5. ^ Gilliam B (2011). "A practical discussion of nitrogen narcosis".  
  6. ^ a b Lundgren, Claus EG; Ferrigno, Massimo (eds). (1985). "Physiology of Breath-hold Diving. 31st Undersea and Hyperbaric Medical Society Workshop.". UHMS Publication Number 72(WS-BH)4-15-87.  
  7. ^ a b Mackensen GB, McDonagh DL, Warner DS (March 2009). "Perioperative hypothermia: use and therapeutic implications". J. Neurotrauma 26 (3): 342–58.  
  8. ^ Mathew PK (January 1981). "Diving reflex. Another method of treating paroxysmal supraventricular tachycardia". Arch. Intern. Med. 141 (1): 22–3.  
  9. ^ Gardiner M, Eisen S, Murphy C. Training in paediatrics: the essential curriculum. Oxford University Press, Oxford 2009.

External links

  • Merck Medical Dictionary
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.