#jsDisabledContent { display:none; } My Account | Register | Help

# Median test

Article Id: WHEBN0000236641
Reproduction Date:

 Title: Median test Author: World Heritage Encyclopedia Language: English Subject: Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Median test

In statistics, Mood's median test is a special case of Pearson's chi-squared test. It is a nonparametric test that tests the null hypothesis that the medians of the populations from which two or more samples are drawn are identical. The data in each sample are assigned to two groups, one consisting of data whose values are higher than the median value in the two groups combined, and the other consisting of data whose values are at the median or below. A Pearson's chi-squared test is then used to determine whether the observed frequencies in each sample differ from expected frequencies derived from a distribution combining the two groups.

## Applications and comparison to other tests

The test has low power (efficiency) for moderate to large sample sizes. The Wilcoxon–Mann–Whitney U two-sample test or its generalisation for more samples, the Kruskal-Wallis test, can often be considered instead. The relevant aspect of the median test is that it only considers the position of each observation relative to the overall median, whereas the Wilcoxon–Mann–Whitney test takes the ranks of each observation into account. Thus the other mentioned tests are usually more powerful than the median test. Moreover, the median test can only be used for quantitative data.[1]

However, although the alternative Kruskal-Wallis test does not assume normal distributions, it does assume that the variance is approximately equal across samples. Hence, in such situations the median test is an appropriate test. Moreover, KrusSiegel & Castellan (1988, p. 124) suggest that there is no alternative to the median test when one or more observations are "off the scale."

• Sign test - a paired alternative to the median test.

## References

• Corder, G.W. & Foreman, D.I. (2014). Nonparametric Statistics: A Step-by-Step Approach, Wiley. ISBN 978-1118840313.
• Siegel, S., & Castellan, N. J. Jr. (1988, 2nd ed.). Nonparametric statistics for the behavioral sciences. New York: McGraw–Hill.
• Friedlin, B. & Gastwirth, J. L. (2000). Should the median test be retired from general use? The American Statistician, 54, 161–164.
1. ^ psych.unl.edu/psycrs/handcomp/hcmedian.PDF
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.

Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.