World Library  
Flag as Inappropriate
Email this Article

Milrinone

Article Id: WHEBN0004913722
Reproduction Date:

Title: Milrinone  
Author: World Heritage Encyclopedia
Language: English
Subject: Phosphodiesterase inhibitor, Inotropic agents, Vasodilators, Inotrope, Mesembrine
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Milrinone

Milrinone
Systematic (IUPAC) name
2-methyl-6-oxo-1,6-dihydro-3,4'-bipyridine-5-carbonitrile
Clinical data
AHFS/Drugs.com
MedlinePlus
Pregnancy
category
  • US: C (Risk not ruled out)
Legal status
  • (Prescription only)
Routes of
administration
IV only
Pharmacokinetic data
Bioavailability 100% (as IV bolus, infusion)
Protein binding 70 to 80%
Metabolism Hepatic (12%)
Biological half-life 2.3 hours (mean, in CHF)
Excretion Urine (85% as unchanged drug) within 24 hours
Identifiers
CAS Registry Number  Y
ATC code C01
PubChem CID:
IUPHAR/BPS
DrugBank  Y
ChemSpider  Y
UNII  Y
KEGG  Y
ChEBI  Y
ChEMBL  Y
Chemical data
Formula C12H9N3O
Molecular mass 211.219 g/mol
Physical data
Density 1.344 g/cm3
Melting point 315 °C (599 °F)
Boiling point 449 °C (840 °F)
 Y   

Milrinone, commonly known and marketed under the brand name Primacor, is a medication used in patients who have heart failure. It is a phosphodiesterase 3 inhibitor that works to increase the heart's contractility and decrease pulmonary vascular resistance. Milrinone also works to vasodilate which helps alleviate increased pressures (afterload) on the heart, thus improving its pumping action. While it has been used in people with heart failure for many years, recent studies suggest that milrinone may exhibit some negative side effects that have caused some debate about its use clinically.[1][2]

Overall, milrinone supports ventricular functioning of the heart by decreasing the degradation of cAMP and thus increasing phosphorylation levels of many components in the heart that contribute to contractility and heart rate. Milrinone use following cardiac surgery has been under some debate because of the potential increase risk of postoperative atrial arrhythmias.[3] However, in the short term milrinone has been deemed beneficial to those experiencing heart failure and an effective therapy to maintain heart function following cardiac surgeries. There is no evidence of any long term beneficial effects on survival.[4]

Contents

  • Contractility in the heart 1
  • Mechanism of action 2
  • Adverse effects 3
  • Synthesis 4
  • References 5
  • External links 6

Contractility in the heart

People experiencing heart failure have a significant decrease in the contractile ability of heart cells (cardiomyocytes). This impaired contractility occurs through a number of mechanisms. Some of the main problems associated with decreased contractility in those with heart failure are issues arising from imbalances in the concentration of calcium. Calcium permits myosin and actin to interact which allows initiation of contraction within the cardiomyocytes. In those with heart failure there may be a decreased amount of calcium within the cardiomyocytes reducing the available calcium to initiate contraction. When contractility is decreased the amount of blood being pumped out of the heart into circulation is decreased as well. This reduction in cardiac output causes many systemic implications such as fatigue, syncope and other issues associated with decreased blood flow to peripheral tissues.

Mechanism of action

There are receptors on cardiomyocytes called β-adrenergic receptors. These receptors are stimulated by molecules such as norepinephrine and epinephrine. Stimulation of these receptors causes a cascade of events ultimately leading to increase cyclic adenosine monophosphate (cAMP) within the cell. Cyclic adenosine monophosphate causes increase activation of protein kinase A (PKA). PKA is a protein that phosphorylates many components within the cardiomyocytes and either activates or inhibits their action. Phosphodiesterases are enzymes responsible for the breakdown of cAMP. Therefore, when phosphodiesterases break down cAMP the amount of PKA within the cell decreases as well.

Milrinone is a phosphodiesterase-3 inhibitor. This drug inhibits the action of phosphodiesterase-3 and thus prevents degradation of cAMP. With increase cAMP levels there is an increase activation of PKA. This PKA will phosphorylate many components of the cardiomyocyte such as calcium channels and components of the myofilaments. Phosphorylation of calcium channels permits an increase in calcium influx into the cell. This increase in calcium influx permits increased contractility. PKA also phosphorylates potassium channels promoting their action. Potassium channels are responsible for repolarization of the cardiomyocytes therefore increasing the rate at which cells can depolarize and generate contraction. PKA also phosphorylates components on myofilaments allowing actin and myosin to interact more easily and thus increasing contractility and the inotropic state of the heart. Milrinone allows stimulation of cardiac function independently of β-adrenergic receptors which appear to be down-regulated in those with heart failure.

Adverse effects

In recent years many studies have been performed showing that milrinone use may present potential adverse side effects in heart failure patients. Following cardiac surgery milrinone has been used as a therapy to maintain ventricular function of the heart. A study conducted by Fleming and colleagues has shown that milrinone use may be associated with increase atrial fibrillation following cardiac surgery. In another study by Smith and colleagues, milirinone appeared to generate a 3-fold increase in tachyarrhythmias following surgery for congenital heart disease. However, other studies suggest that milrinone is extremely beneficial in maintaining heart function in the short term following surgical procedures.

Synthesis

Singh, B.; 1983, U.S. Patent 4,413,127.

References

  1. ^ Packer, M. Calcium channel blockers in chronic heart failure: The risks of ‘ physiologically rational ’ therapy [Editorial] . C irculation 8 2, 2254 – 2257.
  2. ^ Packer M, Carver J, Rodeheffer R, Ivanhoe R, DiBianco R, Zeldis S et al. Effect of Oral Milrinone on Mortality in Severe Chronic Heart Failure. The New England Journal of Medicine. 21 Nov 1991;325(21):1468-1475.
  3. ^ Fleming G, Murray K, Yu C, Byrne J, Greelish J, Petracek M et al. Milrinone Use Is Associated With Postoperative Atrial Fibrillation After Cardiac Surgery. The Journal of the American Heart Association. 29 Sept 2008;118:1619-1625.
  4. ^ British National Formulary. 66 ed. London: BMJ Group and Pharmaceutical Press; Sept 2013
  • Anonymous. Milrinone for Acute Exacerbations of CHF: Routine Use Not Recommended. Formulary Journal. May 2000;37(5): 227.
  • Sablotzki A, Starzmann W, Schebel R, Grond S and Czeslik E. Selective Pulmonary Vasodilation with Inhaled Aerosolized Milrinone in Heart Transplant Candidates. Canadian Journal of Anesthesia. 18 Apr 2005;52(10):1076-1083.
  • Smith A, Owen J, Borgman K, Fish F, and Kannankeril P. Relation of MIlrinone After Surgery for Congenital Heart Disease to Significant Postoperative Tachyarrhythmias. American Journal of Cardiology. 1 Dec 2011;108(11):1620-1624.
  • Yan C, Miller C and Abe, J. Regulation of Phosphodiesterase 3 and Inducible cAMP Early Repressor in the Heart. Circulation Research. 2007;100:589-501.
  • Yano M, Kohno M, Oskusa T, Mochizuki M, Yamada J, Kohno M et all. Effect of Milrinone On Left Ventricular Relaxation and Calcium Uptake Function of Cardiac Sarcoplasmic Reticulum. American Journal of Physiology. 9 May 2000;279(4):1898-1905.

External links

  • Mechanism of action
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.