World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0018342401
Reproduction Date:

Title: Nickel-56  
Author: World Heritage Encyclopedia
Language: English
Subject: Iron-56, Nickel-62
Publisher: World Heritage Encyclopedia


Naturally occurring nickel (Ni) is composed of five stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance).[1] 58Ni may decay by double beta-plus decay to 58Fe.[2] 26 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has 1 meta state.

The isotopes of nickel range in atomic weight from 48Ni to 78Ni.

Nickel-48, discovered in 1999, is the most neutron-poor nickel isotope known. With 28 protons and 20 neutrons 48Ni is "doubly magic" (like 208Pb) and therefore unusually stable.[3]

Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae corresponds to the decay of nickel-56 to cobalt-56 and then to iron-56.

Nickel-58 is the most abundant isotope of nickel, making up 68.077% of the natural abundance. Possible sources include electron capture from copper-58 and EC + p from zinc-59.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59Ni has found many applications in isotope geology. 59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment.

Nickel-60 is the daughter product of the extinct radionuclide 60Fe (half-life = 2.6 Ma). Because 60Fe had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni. Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history/very early history. Unfortunately, nickel isotopes appear to have been heterogeneously distributed in the early solar system. Therefore, so far, no actual age information has been attained from 60Ni excesses. Other sources may also include beta decay from cobalt-60 and electron capture from copper-60.

Nickel-61 is the only stable isotope of nickel with a nuclear spin (I = 3/2), which makes it useful for studies by EPR spectroscopy.

Nickel-62 has the highest binding energy per nucleon of any isotope for any element, when including the electron shell in the calculation. More energy is released forming this isotope than any other, although fusion can form heavier isotopes. For instance, two 40Ca atoms can fuse to form 80Kr plus 4 electrons, liberating 77 keV per nucleon, but reactions leading to the iron/nickel region are more probable as they release more energy per baryon.

Nickel-64 is another isotope of nickel. Possible sources include beta decay from cobalt-64, and electron capture from copper-64

Nickel-78 is the element's heaviest isotope and is believed to have an important involvement in supernova nucleosynthesis of elements heavier than iron.[4]

Standard atomic mass: 58.6934(2) u


Z(p) N(n)  
isotopic mass (u)
half-life decay
mode(s)[5][n 1]
isotope(s)[n 2]
(mole fraction)
range of natural
(mole fraction)
excitation energy
48Ni 28 20 48.01975(54)# 10# ms
[>500 ns]
49Ni 28 21 49.00966(43)# 13(4) ms
[12(+5-3) ms]
50Ni 28 22 49.99593(28)# 9.1(18) ms β+ 50Co 0+
51Ni 28 23 50.98772(28)# 30# ms
[>200 ns]
β+ 51Co 7/2-#
52Ni 28 24 51.97568(9)# 38(5) ms β+ (83%) 52Co 0+
β+, p (17%) 51Fe
53Ni 28 25 52.96847(17)# 45(15) ms β+ (55%) 53Co (7/2-)#
β+, p (45%) 52Fe
54Ni 28 26 53.95791(5) 104(7) ms β+ 54Co 0+
55Ni 28 27 54.951330(12) 204.7(17) ms β+ 55Co 7/2-
56Ni 28 28 55.942132(12) 6.075(10) d β+ 56Co 0+
57Ni 28 29 56.9397935(19) 35.60(6) h β+ 57Co 3/2-
58Ni 28 30 57.9353429(7) Observationally Stable[n 3] 0+ 0.680769(89)
59Ni 28 31 58.9343467(7) 7.6(5)×104 a EC (99%) 59Co 3/2-
β+ (1.5x10-5%)[6]
60Ni 28 32 59.9307864(7) Stable 0+ 0.262231(77)
61Ni 28 33 60.9310560(7) Stable 3/2- 0.011399(6)
62Ni[n 4] 28 34 61.9283451(6) Stable 0+ 0.036345(17)
63Ni 28 35 62.9296694(6) 100.1(20) a β- 63Cu 1/2-
63mNi 87.15(11) keV 1.67(3) µs 5/2-
64Ni 28 36 63.9279660(7) Stable 0+ 0.009256(9)
65Ni 28 37 64.9300843(7) 2.5172(3) h β- 65Cu 5/2-
65mNi 63.37(5) keV 69(3) µs 1/2-
66Ni 28 38 65.9291393(15) 54.6(3) h β- 66Cu 0+
67Ni 28 39 66.931569(3) 21(1) s β- 67Cu 1/2-
67mNi 1007(3) keV 13.3(2) µs β- 67Cu 9/2+
IT 67Ni
68Ni 28 40 67.931869(3) 29(2) s β- 68Cu 0+
68m1Ni 1770.0(10) keV 276(65) ns 0+
68m2Ni 2849.1(3) keV 860(50) µs 5-
69Ni 28 41 68.935610(4) 11.5(3) s β- 69Cu 9/2+
69m1Ni 321(2) keV 3.5(4) s β- 69Cu (1/2-)
IT 69Ni
69m2Ni 2701(10) keV 439(3) ns (17/2-)
70Ni 28 42 69.93650(37) 6.0(3) s β- 70Cu 0+
70mNi 2860(2) keV 232(1) ns 8+
71Ni 28 43 70.94074(40) 2.56(3) s β- 71Cu 1/2-#
72Ni 28 44 71.94209(47) 1.57(5) s β- (>99.9%) 72Cu 0+
β-, n (<.1%) 71Cu
73Ni 28 45 72.94647(32)# 0.84(3) s β- (>99.9%) 73Cu (9/2+)
β-, n (<.1%) 72Cu
74Ni 28 46 73.94807(43)# 0.68(18) s β- (>99.9%) 74Cu 0+
β-, n (<.1%) 73Cu
75Ni 28 47 74.95287(43)# 0.6(2) s β- (98.4%) 75Cu (7/2+)#
β-, n (1.6%) 74Cu
76Ni 28 48 75.95533(97)# 470(390) ms
[0.24(+55-24) s]
β- (>99.9%) 76Cu 0+
β-, n (<.1%) 75Cu
77Ni 28 49 76.96055(54)# 300# ms
[>300 ns]
β- 77Cu 9/2+#
78Ni 28 50 77.96318(118)# 120# ms
[>300 ns]
β- 78Cu 0+


  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.
  • Nuclide masses are given by IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO)
  • Isotope abundances are given by IUPAC Commission on Isotopic Abundances and Atomic Weights


  • Isotope masses from:
  • Isotopic compositions and standard atomic masses from:
  • Half-life, spin, and isomer data selected from the following sources. See editing notes on this article's talk page.

See also

Isotopes of cobalt Isotopes of nickel Isotopes of copper
Table of nuclides
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.