World Library  
Flag as Inappropriate
Email this Article

Nitride

Article Id: WHEBN0001216060
Reproduction Date:

Title: Nitride  
Author: World Heritage Encyclopedia
Language: English
Subject: Sodium nitride, Gallium nitride, Tungsten nitride, Phosphorus mononitride, Niobium nitride
Collection: Anions, Nitrides
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Nitride

In chemistry, a nitride is a compound of nitrogen where nitrogen has a formal oxidation state of −3. Nitrides are a large class of compounds with a wide range of properties and applications.[1]

The nitride ion, N3−, is never encountered in solution because it is so basic that it would be protonated. Its ionic radius is estimated to be 140 pm. Related to but distinct from nitride is pernitride, N22−.

Contents

  • Uses of nitrides 1
  • Examples 2
    • Nitrides of the s-block elements 2.1
    • Nitrides of the p-block elements 2.2
    • Transition metal nitrides 2.3
    • Molecular nitrides 2.4
  • References 3

Uses of nitrides

Like carbides, nitrides are often refractory materials owing to their high lattice energy which reflects the strong attraction of "N3−
" for the metal cation. Thus, titanium nitride and silicon nitride are used as cutting materials and hard coatings. Hexagonal boron nitride, which adopts a layered structure, is a useful high-temperature lubricant akin to molybdenum disulfide. Nitride compounds often have large band gaps, thus nitrides are usually insulators or wide bandgap semiconductors, examples include boron nitride and silicon nitride. The wide band gap material gallium nitride is prized for emitting blue light in LEDs.[2] Like some oxides, nitrides can absorb hydrogen and have been discussed in the context of hydrogen storage, e.g. lithium nitride.

Examples

Classification of such a varied group of compounds is somewhat arbitrary. Compounds where nitrogen is not assigned 3- oxidation state are not included, e.g. nitrogen trichloride, nor are ammonia and its many organic derivatives.

Nitrides of the s-block elements

Only one alkali metal nitride is stable, the purple-reddish lithium nitride (Li3N), which forms when lithium burns in an atmosphere of N2.[3] Sodium nitride and potassium nitride have been generated in the laboratory, however. The nitrides of the alkaline earth metals have the formula M3N2 and are numerous. Examples include Mg3N2, Be3N2, Ca3N2, Sr3N2, and Ba3N2. The nitrides of electropositive metals (including Li, Zn, and the alkaline earth metals) readily hydrolyze upon contact with air:

Mg3N2 + 6 H2O → 3 Mg(OH)2 + 2 NH3

Nitrides of the p-block elements

Boron nitride exists as several forms (polymorphs). Nitrides of silicon and phosphorus are also known, but only the former is commercially important. The nitrides of aluminium, gallium, and indium adopt diamond-like wurtzite structure in which each atom occupies tetrahedral sites. For example in aluminium nitride, each aluminium atom has four neighboring nitrogen atoms at the corners of a tetrahedron and similarly each nitrogen atom has four neighboring aluminium atoms at the corners of a tetrahedron. This structure is like hexagonal diamond (lonsdaleite) where every carbon atom occupies a tetrahedral site (however wurtzite differs from sphalerite and diamond in the relative orientation of tetrahedra). Thallium(I) nitride, Tl3N is known, but thallium(III) nitride, TlN, is not.

Transition metal nitrides

For the group 3 metals, scandium nitride (ScN) is known. Yttrium nitride (YN) is also known. Group 4, 5, and 6 transition metals, that is the titanium, vanadium and chromium groups all form nitrides. They are refractory, with high melting point and are chemically stable. Representative is titanium nitride. Sometimes these materials are called "interstitial nitrides."

Nitrides of the Group 7 and 8 transition metals decompose readily. For example, iron nitride, Fe2N decomposes at 200 °C. Platinum nitride and osmium nitride may contain N2 units, and as such should not be called nitrides.[4][5]

Nitrides of heavier members from group 11 and 12 are less stable than copper nitride, Cu3N and Zn3N2: dry silver nitride (Ag3N) is a contact explosive which may detonate from the slightest touch, even a falling water droplet.[6]

Molecular nitrides

Many metals form molecular nitrido complexes, as discussed in the specialized article. The main group elements also form some molecular nitrides. Cyanogen ((CN)2) and tetrasulfur tetranitride (S4N4) are rare examples of a molecular binary (containing one element aside from N) nitrides. They dissolve in nonpolar solvents. Both undergo polymerization. S4N4 is also unstable with respect to the elements, but less so that the isostructural Se4N4. Heating S4N4 gives a polymer, and a variety of molecular sulfur nitride anions and cations are also known.

References

  1. ^  
  2. ^ The Chemistry of Transition Metal Carbides and Nitrides S. T. Oyama, Ed. Blackie Academic, 1996 ISBN 0-7514-0365-2. H.O Pierson (1996). Handbook of refractory carbides and nitrides, William Andrew Inc. ISBN 0-8155-1392-5
  3. ^ Gregory, Duncan H (2001). "Nitride chemistry of the s-block elements". Coordination Chemistry Reviews 215: 301–345.  
  4. ^ L. Siller, N. Peltekis, S. Krishnamurthy, Y. Chao, S.J. Bull, M.R.C. Hunt (2005). "Gold film with gold nitride-A conductor but harder than gold". Appl. Phys. Lett. 86 (22): 221912.  
  5. ^ J. A. Montoya, A.D Hernandez, C. Sanloup, E Gregoryanz, S Scandolo (2007). "OsN2: Crystal structure and electronic properties". Appl. Phys. Lett. 90 (1): 011909.  
  6. ^ Edward S. Shanley, John L. Ennis (1991). "The Chemistry and Free Energy Formation of Silver Nitride". Ind. Eng. Chem. Res. 30 (11): 2503.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.