World Library  
Flag as Inappropriate
Email this Article

Parsec

Article Id: WHEBN0014231240
Reproduction Date:

Title: Parsec  
Author: World Heritage Encyclopedia
Language: English
Subject: Astronomical unit, V1054 Ophiuchi, Light-year, 2MASS J11145133-2618235, Parallax
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Parsec

PARSEC is a package designed to perform electronic structure calculations of solids and molecules using density functional theory (DFT). The acronym stands for Pseudopotential Algorithm for Real-Space Electronic Calculations.[1] It solves the Kohn–Sham equations in real space, without the use of explicit basis sets.[2]

One of the strengths of this code is that it handles non-periodic boundary conditions in a natural way, without the use of super-cells, but can equally well handle periodic and partially periodic boundary conditions.[3][4][5] Another key strength is that it is readily amenable to efficient massive parallelization, making it highly effective for very large systems.[6]

Its development started in early 1990s with James Chelikowsky (now at the University of Texas), Yousef Saad and collaborators at the University of Minnesota. The code is freely available under the GNU GPLv2. Currently, its public version is 1.3.6. Some of the physical/chemical properties calculated by this code are: Kohn–Sham band structure, atomic forces (including molecular dynamics capabilities), static susceptibility, magnetic dipole moment, and many additional molecular and solid state properties.

See also

References

  1. ^ L. Kronik, A. Makmal, M. Tiago, M. M. G. Alemany, X. Huang, Y. Saad, and J. R. Chelikowsky, "PARSEC - the pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nanostructures", Phys. Stat. Solidi. (b) (Feature Article) 243, 1063–1079 (2006)
  2. ^ J. R. Chelikowsky, N. Troullier, and Y. Saad, "Finite difference-pseudopotential method: Electronic structure calculations without a basis", Phys. Rev. Lett. 72, 1240 (1994).
  3. ^ M. M. G. Alemany, M. Jain, L. Kronik, and J. R. Chelikowsky, "A real space pseudopotential method for computing the electronic properties of periodic systems", Phys. Rev. B69, 075101:1-6 (2004)"
  4. ^ A. Natan, A. Benjamini, D. Naveh, L. Kronik, M. L. Tiago, S. P. Beckman, and J. R. Chelikowsky, "Real-space pseudopotential method for first principles calculations of general periodic and partially periodic systems", Phys. Rev. B 78, 075109 (2008).
  5. ^ J. Han, M.L. Tiago, T.-L. Chan, and J.R. Chelikowsky, "Real space method for the electronic structure of one-dimensional periodic systems", J. Chem. Phys. 129, 144109 (2008)
  6. ^ A. Stathopoulos, S. Öğüt, Y. Saad, J. R. Chelikowsky, and H. Kim, Comput. Sci. Eng. 2, 19 (2000).

External links

  • Official website
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.