World Library  
Flag as Inappropriate
Email this Article

Pentylenetetrazol

Article Id: WHEBN0030873297
Reproduction Date:

Title: Pentylenetetrazol  
Author: World Heritage Encyclopedia
Language: English
Subject: Mad in America, Nervous system of gastropods, Zacopride, Isoethcathinone, TC-2216
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Pentylenetetrazol

Pentylenetetrazol
Systematic (IUPAC) name
6,7,8,9-Tetrahydro-5H-tetrazolo(1,5-a)azepine
Clinical data
Legal status
?
Identifiers
CAS number  YesY
ATC code R07
PubChem
ChemSpider  N
UNII  N
KEGG  N
ChEBI  N
ChEMBL  N
Chemical data
Formula C6H10N4 
Mol. mass 138.171 g/mol
 N   

Pentylenetetrazol, also known as pentylenetetrazole, metrazol, pentetrazol (INN), pentamethylenetetrazol, Cardiazol or PTZ, was a drug used as a circulatory and respiratory stimulant. High doses cause convulsions, as discovered by the Hungarian-American neurologist and psychiatrist Ladislas J. Meduna in 1934. It has been used in convulsive therapy, but was never considered to be effective, and side-effects such as seizures were difficult to avoid. Its approval by the FDA was revoked in 1982.[1]

Mechanism

The mechanism of pentylenetetrazol is not well understood, and it may have multiple mechanisms of action. In 1984, Squires et al. published a report analyzing pentylenetetrazol and several structurally related convulsant drugs. They found that in vivo convulsant potency was strongly correlated to in vitro affinity to the picrotoxin binding site on the GABA-A receptor complex. Many GABA-A ligands are effective anticonvulsants, such as the sedatives diazepam and phenobarbital, but presumably pentylenetetrazol has the opposite effect when it binds to the GABA-A receptor.[2]

Several studies have focused on the way pentylenetetrazol influences neuronal ion channels. A 1987 study found that pentylenetetrazol increases calcium influx and sodium influx, both of which depolarize the neuron. Because these effects were antagonized by calcium channel blockers, it was concluded that pentylenetetrazol acts at calcium channels, and it causes calcium channels to lose selectivity and conduct sodium ions as well.[3]

Uses

Pentylenetetrazol has been used experimentally to study seizure phenomena and to identify pharmaceuticals that may control seizure susceptibility. Pentylenetetrazol is also a prototypical anxiogenic drug and, has been extensively utilized in animal models of anxiety. Pentylenetetrazol produces a reliable discriminative stimulus which is largely mediated by the GABAA receptor. Several classes of compounds can modulate the pentylenetetrazol discriminative stimulus including 5-HT1A, 5-HT3, NMDA, glycine, and L-type calcium channel ligands.[4]

Recently, Stanford University researchers have renewed interest in PTZ as a candidate for pharmacological treatment of Down syndrome. Published in the April 2007 issue of Nature Neuroscience, their brief communication outlined an experiment designed to test the underlying theory proposed to explain the purported efficacy of GABAA antagonists in restoring the declarative memory deficits associated with the mouse model of human Down Syndrome. Ts65Dn mice injected with a 2-week regimen of either of two compounds picrotoxin or bilobalide (both GABA antagonists) showed marked improvements in both exploration and recognition of novel objects over controls injected with only saline. These results were duplicated in a second experiment with mice fed either plain milk or a combination of milk and a non-epileptogenic dose of PTZ daily for 17 days. PTZ-fed mice achieved novel object task scores comparable to wild-type (normal) mice. These improvements persisted at least 1 to 2 months after the treatment regimen. Not surprisingly these compounds' efficacies were accompanied by the normalization of Long-term potentiation in the dentate gyrus one month after the end of treatment, further suggesting persistent drug-mediated improvements in learning and memory.[5]

The finding of pentylenetetrazol's effectiveness in treating a mouse model of Down syndrome has led to it being explored as a means of correcting other learning deficiencies. Specifically, hamsters denied their natural circadian rhythm (though not denied sleep) had their memory restored to near-normal levels when treated with pentylenetetrazol.[6]

Alternatives

In 1939, pentylenetetrazol was replaced by electroconvulsive therapy as the preferred method for inducing seizures in England's mental hospitals. However, it wasn't disapproved of in the United States until 1982.

References

  1. ^ Minkel JR (February 25, 2007). "Drug May Counteract Down Syndrome". Scientific American. Retrieved 2007-03-20. 
  2. ^ Squires RF, Saederup E, Crawley JN, Skolnick P, Paul SM (1984). "Convulsant potencies of tetrazoles are highly correlated with actions on GABA / benzodiazepine / picrotoxin receptor complexes in brain". Life Sci. 35 (14): 1439–44.  
  3. ^ Papp A, Fehér O, Erdélyi L (1987). "The ionic mechanism of the pentylenetetrazol convulsions". Acta Biol. Hung. 38 (3–4): 349–61.  
  4. ^ Jung ME, Lal H, Gatch MB (2002). "The discriminative stimulus effects of pentylenetetrazol as a model of anxiety: recent developments". Neurosci. Biobehav. Rev. 26 (4): 429–39.  
  5. ^ Fernandez F, Morishita W, Zuniga E, Nguyen J, Blank M, Malenka RC, Garner CC (2007). "Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome". Nat. Neurosci. 10 (4): 411–3.  
  6. ^ Ruby NF, Hwang CE, Wessells C, Fernandez F, Zhang P, Sapolsky R, Heller HC (2008). "Hippocampal-dependent learning requires a functional circadian system". PNAS USA 105 (40): 15593–8.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.