World Library  
Flag as Inappropriate
Email this Article

Photodegradation

 

Photodegradation

Photo-degradation is the alteration of materials by light. Typically, the term refers to the combined action of sunlight and air. Photo-degradation is usually oxidation and hydrolysis. Often photodegradation is avoided, since it destroys paintings and other artifacts. It is however partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies.

Contents

  • Where photodegradation is important 1
    • Pesticides 1.1
    • Pharmaceuticals 1.2
  • Mechanism of photodegradation 2
  • Protection against photodegradation 3
  • References 4
    • Citations 4.1
    • Sources 4.2

Where photodegradation is important

Pesticides

The photodegradation of pesticides is of great interest because of the scale of agriculture and the intensive use of chemicals. Pesticides are however selected in part not to photodegrade readily in sunlight in order to allow them to exert their biocidal activity. Thus, additional modalities are implemented to enhance their photodegradation, including the use of photosensitizers, photocatalysts (e.g., titanium dioxide), and the addition of reagents such as hydrogen peroxide that would generate hydroxyl radicals that would attack the pesticides.[1]

Pharmaceuticals

The photodegradation of pharmaceuticals is of interest because they are found in many water supplies. They have deleterious effects on aquatic organisms including toxicity, endocrine disruption, genetic damage.[2]

Mechanism of photodegradation

Many organic chemicals are thermodynamically unstable in the presence of oxygen, however, their rate of spontaneous oxidation is slow at room temperature. In the language of physical chemistry, such reactions are kinetically limited. This kinetic stability allows the accumulation of complex environmental structures in the environment. Upon the absorption of light, triplet oxygen converts to hydroxyl radicals, which are produced from water and ozone.[3]

Photochemical reactions are initiated by the absorption of a photon, typically in the wavelength range 290-700 nm (at the surface of the Earth). The energy of an absorbed photon is transferred to electrons in the molecule and briefly changes their configuration (i.e., promotes the molecule from a ground state to an excited state). The excited state represents what is essentially a new molecule. Often excited state molecules are not kinetically stable in the presence of O2 or H2O and can spontaneously decompose (oxidize or hydrolyze). Sometimes molecules decompose to produce high energy, unstable fragments that can react with other molecules around them. The two processes are collectively referred to as direct photolysis or indirect photolysis, and both mechanisms contribute to the removal of pollutants.

The United States federal standard for testing plastic for photo-degradation is 40 CFR Ch. I (7–1–03 Edition)PART 238

Protection against photodegradation

Photodegradation of plastics and other materials can be inhibited with additives, which are widely used. These additives include antioxidants, which interrupt degradation processes. Typical antioxidants are derivatives of aniline. Another type of additive are UV-absorbers. These agents capture the photon and converting it to heat. Typical UV-absorbers are hydroxy-substituted benzophenones, related to the chemicals used in sunscreen.[3]

References

Citations

  1. ^ Burrows, H. D.; Canle L, M.; Santaballa, J. A.; Steenken, S., "Reaction pathways and mechanisms of photodegradation of pesticides", J. Photochem. Photobiol., B 2002, 67, 71-108. doi:10.1016/S1011-1344(02)00277-4
  2. ^ Boreen, A. L.; Arnold, W. A .; McNeill, K., "Photodegradation of pharmaceuticals in the aquatic environment: a review", Aquat. Sci. 2003, 65, 320-341.
  3. ^ a b Walter Simmler "Air, 6. Photochemical Degradation" in Ullmann's Encyclopedia of Industrial Chemistry 2011, Wiley-VCH, Weinheim. doi:10.1002/14356007.o02_o06

Sources

  • Castell, JV; Gomez-L, MJ; Miranda, MA; Morera, IM (2008), "Photolytic degradation of Ibuprofen. Toxicity of the isolated photoproducts on fibroblasts and erythrocytes", Photochemistry and Photobiology 46 (6): 991–96,  
  • Salgado, R;Pereira, VJ; Carvalho, G; Soeiro, R; Gaffney, V; Almeida, C; Vale Cardoso, V; Ferreira, E; Benoliel, MJ; Ternes, TA; Oehmen, A; Reis, MAM; Noronha, JP (2013), "Photodegradation kinetics and transformation products of ketoprofen, diclofenac and atenolol in pure water and treated wastewater", Journal of Hazardous Materials (244-245): 516–52,  
  • Temussi, F; CErmola, F; DellaGreca, M; Iesce, MR; Passananto, M; Previtera, L; Zarrelli, A (2011), "Determination of photostability and photodegradation products of indomethacin in aqueous media", Journal of Pharmaceutical and Biomedical Analysis 56: 678–83,  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.