In physics, the Planck length, denoted ℓ_{P}, is a unit of length, equal to 6965161619900000000♠1.616199(97)×10^{−35} metres. It is a base unit in the system of Planck units, developed by physicist Max Planck. The Planck length can be defined from three fundamental physical constants: the speed of light in a vacuum, the Planck constant, and the gravitational constant.
Contents

Value 1

Theoretical significance 2

Visualization 3

See also 4

Notes and references 5

Bibliography 6

External links 7
Value
The Planck length ℓ_{P} is defined as

\ell_\mathrm{P} =\sqrt\frac{\hbar G}{c^3} \approx 1.616\;199 (97) \times 10^{35}\ \mathrm{m}
where c is the speed of light in a vacuum, G is the gravitational constant, and ħ is the reduced Planck constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value.^{[1]}^{[2]}
The Planck length is about 10^{−20} times the diameter of a proton, and thus is exceedingly small.
Theoretical significance
There is currently no proven physical significance of the Planck length; it is, however, a topic of theoretical research. Since the Planck length is so many orders of magnitude smaller than any current instrument could possibly measure, there is no way of examining it directly. According to the generalized uncertainty principle (a concept from speculative models of quantum gravity), the Planck length is, in principle, within a factor of 10, the shortest measurable length – and no theoretically known improvement in measurement instruments could change that.
In some forms of quantum gravity, the Planck length is the length scale at which the structure of spacetime becomes dominated by quantum effects, and it is impossible to determine the difference between two locations less than one Planck length apart. The precise effects of quantum gravity are unknown; it is often guessed that spacetime might have a discrete or foamy structure at a Planck length scale.
The Planck area, equal to the square of the Planck length, plays a role in black hole entropy. The value of this entropy, in units of the Boltzmann constant, is known to be given by \frac{A}{4\ell_\mathrm{P}^2}, where A is the area of the event horizon. The Planck area is the area by which the surface of a spherical black hole increases when the black hole swallows one bit of information, as was proven by Jacob Bekenstein.^{[3]}
If large extra dimensions exist, the measured strength of gravity may be much smaller than its true (smallscale) value. In this case the Planck length would have no fundamental physical significance, and quantum gravitational effects would appear at other scales.
In string theory, the Planck length is the order of magnitude of the oscillating strings that form elementary particles, and shorter lengths do not make physical sense.^{[4]} The string scale l_{s} is related to the Planck scale by ℓ_{P} = g_{s}^{1/4}l_{s}, where g_{s} is the string coupling constant. Contrary to what the name suggests, the string coupling constant is not constant, but depends on the value of a scalar field known as the dilaton.
In loop quantum gravity, area is quantized, and the Planck area is, within a factor of 10, the smallest possible area value.
In doubly special relativity, the Planck length is observerinvariant.
The search for the laws of physics valid at the Planck length is a part of the search for the theory of everything.
Visualization
The size of the Planck length can be visualized as follows: if a particle or dot about 0.1 mm in size (which is approximately the smallest the unaided human eye can see) were magnified in size to be as large as the observable universe, then inside that universesized "dot", the Planck length would be roughly the size of an actual 0.1 mm dot. In other words, a 0.1 mm dot is halfway between the Planck length and the size of the observable universe on a logarithmic scale.
See also
Notes and references

^ John Baez, The Planck Length

^ NIST, "Planck length", NIST's published CODATA constants

^ "Phys. Rev. D 7, 2333 (1973): Black Holes and Entropy". Prd.aps.org. Retrieved 20131021.

^
Bibliography

Garay, Luis J. (January 1995). "Quantum gravity and minimum length".
External links




Base Planck units



Derived Planck units



This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.