World Library  
Flag as Inappropriate
Email this Article

Provider Backbone Bridge Traffic Engineering

Article Id: WHEBN0007597362
Reproduction Date:

Title: Provider Backbone Bridge Traffic Engineering  
Author: World Heritage Encyclopedia
Language: English
Subject: IEEE 802.1ad, IEEE 802, Carrier Ethernet, IEEE 802.1aq, Avaya
Collection: Avaya, Ethernet Standards, Ieee 802, Network Architecture, Network Protocols, Nortel Protocols
Publisher: World Heritage Encyclopedia

Provider Backbone Bridge Traffic Engineering

Provider Backbone Bridge Traffic Engineering (PBB-TE) is an approved telecommunications networking standard, IEEE 802.1Qay-2009.[1] PBB-TE adapts Ethernet technology to carrier class transport networks. It is based on the layered VLAN tags and MAC-in-MAC encapsulation defined in IEEE 802.1ah (Provider Backbone Bridges (PBB)), but it differs from PBB in eliminating flooding, dynamically created forwarding tables, and spanning tree protocols. Compared to PBB and its predecessors, PBB-TE behaves more predictably and its behavior can be more easily controlled by the network operator, at the expense of requiring up-front connection configuration at each bridge along a forwarding path. PBB-TE Operations, Administration, and Management (OAM) is usually based on IEEE 802.1ag. It was initially based on Nortel's Provider Backbone Transport (PBT).

PBB-TE's connection-oriented features and behaviors, as well as its OA&M approach, are inspired by SDH/SONET. PBB-TE can also provide path protection levels similar to the UPSR (Unidirectional Path Switched Ring) protection in SDH/SONET networks.


  • Principle of Operation 1
  • Key features of PBB-TE 2
  • History 3
  • See also 4
  • References 5
  • External links 6

Principle of Operation

The IEEE 802.1Qay PBB-TE standard extends the functionality of IEEE 802.1ah Provider Backbone Bridges, adding a connection-oriented mode using point-to-point trunks that deliver resiliency and configurable performance levels.[2]

A service is identified by an I-SID (Backbone Service Instance Identifier) and each service is associated with a PBB-TE trunk. Each PBB-TE trunk is identified by a triplet of B-SA, B-DA and B-VID. The B-SA and B-DA identify the source and destination bridges, respectively, that are the endpoints of the trunk. The B-VID is a backbone VLAN identifier that is used to distinguish different trunks to the same destination. The management system configures the PBB-TE trunks on all the edge and core bridges by creating static forwarding database entries; the management system is responsible for ensuring that there are no forwarding loops.

The backbone edge bridges map frames to and from an I-SID and perform the MAC header encapsulation and decapsulation functions. The core bridges act as transit nodes. The packets are forwarded based on outer VLAN ID (B-VID) and Destination MAC address (B-DA).

Forwarding is based on the static forwarding database (FDB) entries; dynamic MAC learning is not used. Any incoming broadcast or multicast frames are either dropped or encapsulated as unicast within the trunk. All Destination Lookup Failure packets are dropped rather than flooded. By eliminating any broadcasting or flooding, and by using only the loop-free forwarding paths configured by management, there is no longer any need to use a spanning tree protocol.

Path protection is provided by configuring one work and one protect B-VID for each backbone service instance. In case of work path failure (as indicated by loss of 802.1ag continuity check messages, CCMs) the source bridge swaps the B-VID value to redirect the traffic onto the preconfigured protection path within 50 ms.

PBB-TE equipment leverages economies of scale inherent in Ethernet, promising solutions that are 30% to 40% cheaper than T-MPLS networks with identical features and capabilities,[3] giving PBB-TE a better overall return on investment.[4]

Key features of PBB-TE

  • Traffic and resiliency
  • Secure,
  • Service scalability
  • Operational simplicity
  • Ethernet tunneling with full MPLS interoperability
  • Service and transport layer independence—the services inside the tunnel could be Ethernet, IP, MPLS pseudo-wires, or VPLS.


Provider Backbone Bridge Traffic Engineering was originally developed in 2006 as a Nortel specific protocol named Provider Backbone Transport (PBT). The company championed the technology and brought it to the IEEE 802.1 committee where it was renamed to PBB-TE and a working group, P802.1Qay, was chartered on May 7, 2007.[5] 802.1Qay was in sponsor ballot from January 2009[6] to April 2009.[7] It was ratified by the IEEE Standards Association on June 18, 2009.[1] It was published in August 2009.[8]

See also


  1. ^ a b "IEEE Ratifies Computer Society-Sponsored 802.1Qay". June 23, 2009. Retrieved August 6, 2011. 
  2. ^ EANTC. "Carrier Ethernet Services - The Future". EANTC. Retrieved 29 May 2011. 
  3. ^ The T-MPLS vs. PBT debate
  4. ^ Traffic engineering for Ethernet: PBT vs. T-MPLS
  5. ^ Gubbins, Ed (2008-06-11). "Will PBT go away?". Telephony Online. Retrieved 2008-06-13. 
  6. ^
  7. ^
  8. ^ "Virtual Bridged Local Area Networks Amendment 10: Provider Backbone Bridge Traffic Engineering". IEEE Standard 802.1Qay-2009. August 2009. Retrieved August 6, 2011. 

External links

  • IEEE 802.1Qay project page -Retrieved 29 July 2011
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.