Pulmonary Function Test

Template:Pulmonary function Template:Infobox diagnostic Pulmonary Function Testing (PFT) is a complete evaluation of the respiratory system including patient history, physical examinations, chest x-ray examinations, arterial blood gas analysis, and tests of pulmonary function. The primary purpose of pulmonary function testing is to identify the severity of pulmonary impairment.[1] Pulmonary function testing has diagnostic and therapeutic roles and helps clinicians answer some general questions about patients with lung disease. PFT's are normally performed by a specialist technician.

Indications

Pulmonary function testing is a diagnostic and management tool used for a variety of reasons.

Pediatric neuromuscular disorders

Neuromuscular disorders such as Duchenne muscular dystrophy are associated with gradual loss of muscle function over time. Involvement of respiratory muscles results in poor ability to cough and decreased ability to breathe well and leads to atelectasis (the inability of the lungs to gain oxygen) and an overall insufficiency in lung strength.[2] A combination of reduced lung compliance caused by generalized and widespread microatelectasis and chest wall deformity caused by increased chest wall compliance results in increased work of breathing and chronic respiratory insufficiency.[3] Musculoskeletal deformities such as kyphoscoliosis contribute to restrictive lung disease.

Pulmonary function testing in patients with neuromuscular disorders helps to evaluate the respiratory status of patients at the time of diagnosis, monitor their progress and course, evaluate them for possible surgery, and gives an overall idea of the prognosis.[4]

Other indications

Measurements

Spirometry

Main article: Spirometry

Spirometry includes tests of pulmonary mechanics – measurements of FVC, FEV1, FEF values, forced inspiratory flow rates (FIFs), and MVV. Measuring pulmonary mechanics assesses the ability of the lungs to move large volumes of air quickly through the airways to identify airway obstruction.

The measurements taken by the spirometry device are used to generate a pneumotachograph that can help to assess lung conditions such as: asthma, pulmonary fibrosis, cystic fibrosis, and chronic obstructive pulmonary disease. Physicians may also use the test results to diagnose bronchial hyperresponsiveness to exercise, cold air, or pharmaceutical agents.[5]

Complications of spirometry

Spirometry is a safe procedure; however, there is cause for concern regarding untoward reactions. The value of the test data should be weighed against potential hazards. Some complications have been reported, including pneumothorax, increased intracranial pressure, syncope, chest pain, paroxysmal coughing, nosocomial infections, oxygen desaturation, and bronchospasm. '

Lung volumes

Main article: Lung volumes

There are four lung volumes and four lung capacities. A lung capacity consists of two or more lung volumes. The lung volumes are tidal volume (VT), inspiratory reserve volume (IRV), expiratory reserve volume (ERV), and residual volume (RV). The four lung capacities are total lung capacity (TLC), inspiratory capacity (IC), functional residual capacity (FRC) and vital capacity (VC).

Maximal respiratory pressures

Measurement of maximal inspiratory and expiratory pressures is indicated whenever there is an unexplained decrease in vital capacity or respiratory muscle weakness is suspected clinically. Maximal inspiratory pressure (MIP) is the maximal pressure that can be produced by the patient trying to inhale through a blocked mouthpiece. Maximal expiratory pressure (MEP) is the maximal pressure measured during forced expiration (with cheeks bulging) through a blocked mouthpiece after a full inhalation. Repeated measurements of MIP and MEP are useful in following the course of patients with neuromuscular disorders.

Diffusing capacity

Main article: Diffusing capacity

Measurement of the single-breath diffusing capacity for carbon monoxide (DLCO) is a fast and safe tool in the evaluation of both restrictive and obstructive lung disease.

Oxygen desaturation during exercise

The six-minute walk test is a good index of physical function and therapeutic response in patients with chronic lung disease, such as COPD or idiopathic pulmonary fibrosis[6][7][8]

Arterial blood gases

Arterial blood gases (ABGs) are a helpful measurement in pulmonary function testing in selected patients. The primary role of measuring ABGs in individuals that are healthy and stable is to confirm hypoventilation when it is suspected on the basis of medical history, such as respiratory muscle weakness or advanced COPD.

An elevated serum bicarbonate level, or chronic hypoxemia. ABGs also provide a more detailed assessment of the severity of hypoxemia in patients who have low normal oxyhemoglobin saturation.

Techniques

Helium Dilution

The helium dilution technique for measuring lung volumes uses a closed, rebreathing circuit.[9] This technique is based on the assumptions that a known volume and concentration of helium in air begin in the closed spirometer, that the patient has no helium in their lungs, and that an equilibration of helium can occur between the spirometer and the lungs.

Nitrogen Washout

Main article: Nitrogen washout

The nitrogen washout technique "also called the brian technique" uses a non-rebreathing open circuit. The technique is based on the assumptions that the nitrogen concentration in the lungs is 78% and in equilibrium with the atmosphere, that the patient inhales 100% oxygen and that the oxygen replaces all of the nitrogen in the lungs.[10]

Plethysmography

Main article: Plethysmograph

The plethysmography technique applies Boyle's law and uses measurements of volume and pressure changes to determine lung volume, assuming temperature is constant.[11]

Interpretation of tests

Professional societies such as the American Thoracic Society/ European Respiratory Society have published guidelines regarding conduct and interpretation of pulmonary function testing to ensure standardization and uniformity in performance of tests. The interpretation of tests depends on comparing the patients values to published normals from previous studies. Deviation from guidelines can result in false-positive or false negative test results. Mohanka MR et. al recently demonstrated that only a small minority of pulmonary function laboratories followed published guidelines for spirometry, lung volumes and diffusing capacity in 2012. Ref. A survey of practices of pulmonary function interpretation in laboratories in Northeast Ohio Mohanka MR, et al. Chest. 2012;141(4):1040-1046

Significance

Changes in lung volumes and capacities are generally consistent with the pattern of impairment. TLC, FRC and RV increase with obstructive lung diseases and decrease with restrictive impairment.

References

Template:Cardiopulmonary therapy

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.