The simplest way to quantize a signal is to choose the digital amplitude value closest to the original analog amplitude. This example shows the original analog signal (green), the quantized signal (black dots), the
signal reconstructed from the quantized signal (yellow) and the difference between the original signal and the reconstructed signal (red). The difference between the original signal and the reconstructed signal is the quantization error and, in this simple quantization scheme, is a deterministic function of the input signal.
Quantization, in mathematics and digital signal processing, is the process of mapping a large set of input values to a (countable) smaller set. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms. The difference between an input value and its quantized value (such as roundoff error) is referred to as quantization error. A device or algorithmic function that performs quantization is called a quantizer. An analogtodigital converter is an example of a quantizer.
Contents

Basic properties of quantization 1

Basic types of quantization 2

Analogtodigital converter (ADC) 2.1

Rate–distortion optimization 2.2

Rounding example 3

Midriser and midtread uniform quantizers 4

Granular distortion and overload distortion 5

The additive noise model for quantization error 6

Quantization error models 7

Quantization noise model 8

Rate–distortion quantizer design 9

Neglecting the entropy constraint: Lloyd–Max quantization 10

Uniform quantization and the 6 dB/bit approximation 11

Other fields 12

See also 13

Notes 14

References 15

External links 16
Basic properties of quantization
Because quantization is a manytofew mapping, it is an inherently nonlinear and irreversible process (i.e., because the same output value is shared by multiple input values, it is impossible in general to recover the exact input value when given only the output value).
The set of possible input values may be infinitely large, and may possibly be continuous and therefore uncountable (such as the set of all real numbers, or all real numbers within some limited range). The set of possible output values may be finite or countably infinite. The input and output sets involved in quantization can be defined in a rather general way. For example, vector quantization is the application of quantization to multidimensional (vectorvalued) input data.^{[1]}
Basic types of quantization
2bit resolution with four levels of quantization compared to analog.^{[2]}
3bit resolution with eight levels.
Analogtodigital converter (ADC)
Outside the realm of signal processing, this category may simply be called rounding or scalar quantization. An ADC can be modeled as two processes: sampling and quantization. Sampling converts a voltage signal (function of time) into a discretetime signal (sequence of real numbers). Quantization replaces each real number with an approximation from a finite set of discrete values (levels), which is necessary for storage and processing by numerical methods. Most commonly, these discrete values are represented as fixedpoint words (either proportional to the waveform values or companded) or floatingpoint words. Common wordlengths are 8bit (256 levels), 16bit (65,536 levels), 32bit (4.3 billion levels), and so on, though any number of quantization levels is possible (not just powers of two). Quantizing a sequence of numbers produces a sequence of quantization errors which is sometimes modeled as an additive random signal called quantization noise because of its stochastic behavior. The more levels a quantizer uses, the lower is its quantization noise power.
In general, both ADC processes lose some information. So discretevalued signals are only an approximation of the continuousvalued discretetime signal, which is itself only an approximation of the original continuousvalued continuoustime signal. But both types of approximation errors can, in theory, be made arbitrarily small by good design.
Rate–distortion optimization
Rate–distortion optimized quantization is encountered in source coding for "lossy" data compression algorithms, where the purpose is to manage distortion within the limits of the bit rate supported by a communication channel or storage medium. In this second setting, the amount of introduced distortion may be managed carefully by sophisticated techniques, and introducing some significant amount of distortion may be unavoidable. A quantizer designed for this purpose may be quite different and more elaborate in design than an ordinary rounding operation. It is in this domain that substantial rate–distortion theory analysis is likely to be applied. However, the same concepts actually apply in both use cases.
The analysis of quantization involves studying the amount of data (typically measured in digits or bits or bit rate) that is used to represent the output of the quantizer, and studying the loss of precision that is introduced by the quantization process (which is referred to as the distortion). The general field of such study of rate and distortion is known as rate–distortion theory.
Rounding example
As an example, rounding a real number x to the nearest integer value forms a very basic type of quantizer – a uniform one. A typical (midtread) uniform quantizer with a quantization step size equal to some value \Delta can be expressed as

Q(x) = \sgn(x) \cdot \Delta \cdot \left\lfloor \frac{\left x \right}{\Delta}+\frac1{2}\right\rfloor,
where the function \sgn( ) is the sign function (also known as the signum function). For simple rounding to the nearest integer, the step size \Delta is equal to 1. With \Delta = 1 or with \Delta equal to any other integer value, this quantizer has realvalued inputs and integervalued outputs, although this property is not a necessity – a quantizer may also have an integer input domain and may also have noninteger output values. The essential property of a quantizer is that it has a countable set of possible output values that has fewer members than the set of possible input values. The members of the set of output values may have integer, rational, or real values (or even other possible values as well, in general – such as vector values or complex numbers).
When the quantization step size is small (relative to the variation in the signal being measured), it is relatively simple to show^{[3]}^{[4]}^{[5]}^{[6]}^{[7]}^{[8]} that the mean squared error produced by such a rounding operation will be approximately \Delta^2/ 12. Mean squared error is also called the quantization noise power. Adding one bit to the quantizer halves the value of Δ, which reduces the noise power by the factor ¼. In terms of decibels, the noise power change is \scriptstyle 10\cdot \log_{10}\left(\tfrac{1}{4}\right)\ =\ 6\ \mathrm{dB}.
Because the set of possible output values of a quantizer is countable, any quantizer can be decomposed into two distinct stages, which can be referred to as the classification stage (or forward quantization stage) and the reconstruction stage (or inverse quantization stage), where the classification stage maps the input value to an integer quantization index k and the reconstruction stage maps the index k to the reconstruction value y_k that is the output approximation of the input value. For the example uniform quantizer described above, the forward quantization stage can be expressed as

k = \sgn(x) \cdot \left\lfloor \frac{\left x \right}{\Delta}+\frac1{2}\right\rfloor,
and the reconstruction stage for this example quantizer is simply y_k = k \cdot \Delta.
This decomposition is useful for the design and analysis of quantization behavior, and it illustrates how the quantized data can be communicated over a communication channel – a source encoder can perform the forward quantization stage and send the index information through a communication channel (possibly applying entropy coding techniques to the quantization indices), and a decoder can perform the reconstruction stage to produce the output approximation of the original input data. In more elaborate quantization designs, both the forward and inverse quantization stages may be substantially more complex. In general, the forward quantization stage may use any function that maps the input data to the integer space of the quantization index data, and the inverse quantization stage can conceptually (or literally) be a table lookup operation to map each quantization index to a corresponding reconstruction value. This twostage decomposition applies equally well to vector as well as scalar quantizers.
Midriser and midtread uniform quantizers
Most uniform quantizers for signed input data can be classified as being of one of two types: midriser and midtread. The terminology is based on what happens in the region around the value 0, and uses the analogy of viewing the inputoutput function of the quantizer as a stairway. Midtread quantizers have a zerovalued reconstruction level (corresponding to a tread of a stairway), while midriser quantizers have a zerovalued classification threshold (corresponding to a riser of a stairway).^{[9]}
The formulas for midtread uniform quantization are provided above.
The inputoutput formula for a midriser uniform quantizer is given by:

Q(x) = \Delta\cdot\left(\left\lfloor \frac{x}{\Delta}\right\rfloor + \frac1{2}\right),
where the classification rule is given by

k = \left\lfloor \frac{x}{\Delta} \right\rfloor
and the reconstruction rule is

y_k = \Delta\cdot\left(k+\tfrac1{2}\right).
Note that midriser uniform quantizers do not have a zero output value – their minimum output magnitude is half the step size. When the input data can be modeled as a random variable with a probability density function (pdf) that is smooth and symmetric around zero, midriser quantizers also always produce an output entropy of at least 1 bit per sample.
In contrast, midtread quantizers do have a zero output level, and can reach arbitrarily low bit rates per sample for input distributions that are symmetric and taper off at higher magnitudes. For some applications, having a zero output signal representation or supporting low output entropy may be a necessity. In such cases, using a midtread uniform quantizer may be appropriate while using a midriser one would not be.
In general, a midriser or midtread quantizer may not actually be a uniform quantizer – i.e., the size of the quantizer's classification intervals may not all be the same, or the spacing between its possible output values may not all be the same. The distinguishing characteristic of a midriser quantizer is that it has a classification threshold value that is exactly zero, and the distinguishing characteristic of a midtread quantizer is that is it has a reconstruction value that is exactly zero.^{[9]}
Another name for a midtread quantizer is deadzone quantizer, and the classification region around the zero output value of such a quantizer is referred to as the dead zone. The dead zone can sometimes serve the same purpose as a noise gate or squelch function.
Granular distortion and overload distortion
Often the design of a quantizer involves supporting only a limited range of possible output values and performing clipping to limit the output to this range whenever the input exceeds the supported range. The error introduced by this clipping is referred to as overload distortion. Within the extreme limits of the supported range, the amount of spacing between the selectable output values of a quantizer is referred to as its granularity, and the error introduced by this spacing is referred to as granular distortion. It is common for the design of a quantizer to involve determining the proper balance between granular distortion and overload distortion. For a given supported number of possible output values, reducing the average granular distortion may involve increasing the average overload distortion, and vice versa. A technique for controlling the amplitude of the signal (or, equivalently, the quantization step size \Delta) to achieve the appropriate balance is the use of automatic gain control (AGC). However, in some quantizer designs, the concepts of granular error and overload error may not apply (e.g., for a quantizer with a limited range of input data or with a countably infinite set of selectable output values).
The additive noise model for quantization error
A common assumption for the analysis of quantization error is that it affects a signal processing system in a similar manner to that of additive white noise – having negligible correlation with the signal and an approximately flat power spectral density.^{[4]}^{[8]}^{[10]}^{[11]} The additive noise model is commonly used for the analysis of quantization error effects in digital filtering systems, and it can be very useful in such analysis. It has been shown to be a valid model in cases of high resolution quantization (small \Delta relative to the signal strength) with smooth probability density functions.^{[4]}^{[12]} However, additive noise behaviour is not always a valid assumption, and care should be taken to avoid assuming that this model always applies. In actuality, the quantization error (for quantizers defined as described here) is deterministically related to the signal rather than being independent of it.^{[8]} Thus, periodic signals can create periodic quantization noise. And in some cases it can even cause limit cycles to appear in digital signal processing systems.^{[11]}
One way to ensure effective independence of the quantization error from the source signal is to perform dithered quantization (sometimes with noise shaping), which involves adding random (or pseudorandom) noise to the signal prior to quantization.^{[8]}^{[11]} This can sometimes be beneficial for such purposes as improving the subjective quality of the result, however it can increase the total quantity of error introduced by the quantization process.
Quantization error models
In the typical case, the original signal is much larger than one least significant bit (LSB). When this is the case, the quantization error is not significantly correlated with the signal, and has an approximately uniform distribution. In the rounding case, the quantization error has a mean of zero and the RMS value is the standard deviation of this distribution, given by \scriptstyle {\frac{1}{\sqrt{12}}}\mathrm{LSB}\ \approx\ 0.289\,\mathrm{LSB}. In the truncation case the error has a nonzero mean of \scriptstyle {\frac{1}{2}}\mathrm{LSB} and the RMS value is \scriptstyle {\frac{1}{\sqrt{3}}}\mathrm{LSB}. In either case, the standard deviation, as a percentage of the full signal range, changes by a factor of 2 for each 1bit change in the number of quantizer bits. The potential signaltoquantizationnoise power ratio therefore changes by 4, or \scriptstyle 10\cdot \log_{10}(4)\ =\ 6.02 decibels per bit.
At lower amplitudes the quantization error becomes dependent on the input signal, resulting in distortion. This distortion is created after the antialiasing filter, and if these distortions are above 1/2 the sample rate they will alias back into the band of interest. In order to make the quantization error independent of the input signal, noise with an amplitude of 2 least significant bits is added to the signal. This slightly reduces signal to noise ratio, but, ideally, completely eliminates the distortion. It is known as dither.
Quantization noise model
Quantization noise for a 2bit ADC operating at infinite
sample rate. The difference between the blue and red signals in the upper graph is the quantization error, which is "added" to the quantized signal and is the source of noise.
Comparison of quantizing a sinusoid to 64 levels (6 bits) and 256 levels (8 bits). The additive noise created by 6bit quantization is 12 dB greater than the noise created by 8bit quantization. When the spectral distribution is flat, as in this example, the 12 dB difference manifests as a measurable difference in the noise floors.
Quantization noise is a model of quantization error introduced by quantization in the analogtodigital conversion (ADC) in telecommunication systems and signal processing. It is a rounding error between the analog input voltage to the ADC and the output digitized value. The noise is nonlinear and signaldependent. It can be modelled in several different ways.
In an ideal analogtodigital converter, where the quantization error is uniformly distributed between −1/2 LSB and +1/2 LSB, and the signal has a uniform distribution covering all quantization levels, the Signaltoquantizationnoise ratio (SQNR) can be calculated from

\mathrm{SQNR} = 20 \log_{10}(2^Q) \approx 6.02 \cdot Q\ \mathrm{dB} \,\!
Where Q is the number of quantization bits.
The most common test signals that fulfill this are full amplitude triangle waves and sawtooth waves.
For example, a 16bit ADC has a maximum signaltonoise ratio of 6.02 × 16 = 96.3 dB.
When the input signal is a fullamplitude sine wave the distribution of the signal is no longer uniform, and the corresponding equation is instead

\mathrm{SQNR} \approx 1.761 + 6.02 \cdot Q \ \mathrm{dB} \,\!
Here, the quantization noise is once again assumed to be uniformly distributed. When the input signal has a high amplitude and a wide frequency spectrum this is the case.^{[13]} In this case a 16bit ADC has a maximum signaltonoise ratio of 98.09 dB. The 1.761 difference in signaltonoise only occurs due to the signal being a fullscale sine wave instead of a triangle/sawtooth.
Quantization noise power can be derived from

\mathrm{N} = \frac {(\delta \mathrm{v})^2} { 12 } \mathrm{W} \,\!
where \delta \mathrm{v} is the voltage of the level.
(Typical reallife values are worse than this theoretical minimum, due to the addition of dither to reduce the objectionable effects of quantization, and to imperfections of the ADC circuitry. Also see noise shaping.)
For complex signals in highresolution ADCs this is an accurate model. For lowresolution ADCs, lowlevel signals in highresolution ADCs, and for simple waveforms the quantization noise is not uniformly distributed, making this model inaccurate.^{[14]} In these cases the quantization noise distribution is strongly affected by the exact amplitude of the signal.
The calculations above, however, assume a completely filled input channel. If this is not the case  if the input signal is small  the relative quantization distortion can be very large. To circumvent this issue, analog compressors and expanders can be used, but these introduce large amounts of distortion as well, especially if the compressor does not match the expander. The application of such compressors and expanders is also known as companding.
Rate–distortion quantizer design
A scalar quantizer, which performs a quantization operation, can ordinarily be decomposed into two stages:

Classification: A process that classifies the input signal range into M nonoverlapping intervals \{I_k\}_{k=1}^{M}, by defining M1 boundary (decision) values \{b_k\}_{k=1}^{M1} , such that I_k = [b_{k1}~,~b_k) for k = 1,2,\ldots,M, with the extreme limits defined by b_0 = \infty and b_M = \infty. All the inputs x that fall in a given interval range I_k are associated with the same quantization index k.

Reconstruction: Each interval I_k is represented by a reconstruction value y_k which implements the mapping x \in I_k \Rightarrow y = y_k .
These two stages together comprise the mathematical operation of y = Q(x).
Entropy coding techniques can be applied to communicate the quantization indices from a source encoder that performs the classification stage to a decoder that performs the reconstruction stage. One way to do this is to associate each quantization index k with a binary codeword c_k. An important consideration is the number of bits used for each codeword, denoted here by \mathrm{length}(c_k).
As a result, the design of an Mlevel quantizer and an associated set of codewords for communicating its index values requires finding the values of \{b_k\}_{k=1}^{M1} , \{c_k\}_{k=1}^{M} and \{y_k\}_{k=1}^{M} which optimally satisfy a selected set of design constraints such as the bit rate R and distortion D.
Assuming that an information source S produces random variables X with an associated probability density function f(x), the probability p_k that the random variable falls within a particular quantization interval I_k is given by

p_k = P[x \in I_k] = \int_{b_{k1}}^{b_k} f(x)dx .
The resulting bit rate R, in units of average bits per quantized value, for this quantizer can be derived as follows:

R = \sum_{k=1}^{M} p_k \cdot \mathrm{length}(c_{k}) = \sum_{k=1}^{M} \mathrm{length}(c_k) \int_{b_{k1}}^{b_k} f(x)dx .
If it is assumed that distortion is measured by mean squared error, the distortion D, is given by:

D = E[(xQ(x))^2] = \int_{\infty}^{\infty} (xQ(x))^2f(x)dx = \sum_{k=1}^{M} \int_{b_{k1}}^{b_k} (xy_k)^2 f(x)dx .
Note that other distortion measures can also be considered, although mean squared error is a popular one.
A key observation is that rate R depends on the decision boundaries \{b_k\}_{k=1}^{M1} and the codeword lengths \{\mathrm{length}(c_k)\}_{k=1}^{M}, whereas the distortion D depends on the decision boundaries \{b_k\}_{k=1}^{M1} and the reconstruction levels \{y_k\}_{k=1}^{M}.
After defining these two performance metrics for the quantizer, a typical Rate–Distortion formulation for a quantizer design problem can be expressed in one of two ways:

Given a maximum distortion constraint D \le D_\max, minimize the bit rate R

Given a maximum bit rate constraint R \le R_\max, minimize the distortion D
Often the solution to these problems can be equivalently (or approximately) expressed and solved by converting the formulation to the unconstrained problem \min\left\{ D + \lambda \cdot R \right\} where the Lagrange multiplier \lambda is a nonnegative constant that establishes the appropriate balance between rate and distortion. Solving the unconstrained problem is equivalent to finding a point on the convex hull of the family of solutions to an equivalent constrained formulation of the problem. However, finding a solution – especially a closedform solution – to any of these three problem formulations can be difficult. Solutions that do not require multidimensional iterative optimization techniques have been published for only three probability distribution functions: the uniform,^{[15]} exponential,^{[16]} and Laplacian^{[16]} distributions. Iterative optimization approaches can be used to find solutions in other cases.^{[8]}^{[17]}^{[18]}
Note that the reconstruction values \{y_k\}_{k=1}^{M} affect only the distortion – they do not affect the bit rate – and that each individual y_k makes a separate contribution d_k to the total distortion as shown below:

D = \sum_{k=1}^{M} d_k
where

d_k = \int_{b_{k1}}^{b_k} (xy_k)^2 f(x)dx
This observation can be used to ease the analysis – given the set of \{b_k\}_{k=1}^{M1} values, the value of each y_k can be optimized separately to minimize its contribution to the distortion D.
For the meansquare error distortion criterion, it can be easily shown that the optimal set of reconstruction values \{y^*_k\}_{k=1}^{M} is given by setting the reconstruction value y_k within each interval I_k to the conditional expected value (also referred to as the centroid) within the interval, as given by:

y^*_k = \frac1{p_k} \int_{b_{k1}}^{b_k} x f(x)dx.
The use of sufficiently welldesigned entropy coding techniques can result in the use of a bit rate that is close to the true information content of the indices \{k\}_{k=1}^{M}, such that effectively

\mathrm{length}(c_k) \approx \log_2\left(p_k\right)
and therefore

R = \sum_{k=1}^{M} p_k \cdot \log_2\left(p_k\right) .
The use of this approximation can allow the entropy coding design problem to be separated from the design of the quantizer itself. Modern entropy coding techniques such as arithmetic coding can achieve bit rates that are very close to the true entropy of a source, given a set of known (or adaptively estimated) probabilities \{p_k\}_{k=1}^{M}.
In some designs, rather than optimizing for a particular number of classification regions M, the quantizer design problem may include optimization of the value of M as well. For some probabilistic source models, the best performance may be achieved when M approaches infinity.
Neglecting the entropy constraint: Lloyd–Max quantization
In the above formulation, if the bit rate constraint is neglected by setting \lambda equal to 0, or equivalently if it is assumed that a fixedlength code (FLC) will be used to represent the quantized data instead of a variablelength code (or some other entropy coding technology such as arithmetic coding that is better than an FLC in the rate–distortion sense), the optimization problem reduces to minimization of distortion D alone.
The indices produced by an Mlevel quantizer can be coded using a fixedlength code using R = \lceil \log_2 M \rceil bits/symbol. For example when M=256 levels, the FLC bit rate R is 8 bits/symbol. For this reason, such a quantizer has sometimes been called an 8bit quantizer. However using an FLC eliminates the compression improvement that can be obtained by use of better entropy coding.
Assuming an FLC with M levels, the Rate–Distortion minimization problem can be reduced to distortion minimization alone. The reduced problem can be stated as follows: given a source X with pdf f(x) and the constraint that the quantizer must use only M classification regions, find the decision boundaries \{b_k\}_{k=1}^{M1} and reconstruction levels \{y_k\}_{k=1}^M to minimize the resulting distortion

D=E[(xQ(x))^2] = \int_{\infty}^{\infty} (xQ(x))^2f(x)dx = \sum_{k=1}^{M} \int_{b_{k1}}^{b_k} (xy_k)^2 f(x)dx =\sum_{k=1}^{M} d_k .
Finding an optimal solution to the above problem results in a quantizer sometimes called a MMSQE (minimum meansquare quantization error) solution, and the resulting pdfoptimized (nonuniform) quantizer is referred to as a Lloyd–Max quantizer, named after two people who independently developed iterative methods^{[8]}^{[19]}^{[20]} to solve the two sets of simultaneous equations resulting from {\partial D / \partial b_k} = 0 and {\partial D/ \partial y_k} = 0 , as follows:

{\partial D \over\partial b_k} = 0 \Rightarrow b_k = {y_k + y_{k+1} \over 2} ,
which places each threshold at the midpoint between each pair of reconstruction values, and

{\partial D \over\partial y_k} = 0 \Rightarrow y_k = { \int_{b_{k1}}^{b_k} x f(x) dx \over \int_{b_{k1}}^{b_k} f(x)dx } = \frac1{p_k} \int_{b_{k1}}^{b_k} x f(x) dx
which places each reconstruction value at the centroid (conditional expected value) of its associated classification interval.
Lloyd's Method I algorithm, originally described in 1957, can be generalized in a straightforward way for application to vector data. This generalization results in the Linde–Buzo–Gray (LBG) or kmeans classifier optimization methods. Moreover, the technique can be further generalized in a straightforward way to also include an entropy constraint for vector data.^{[21]}
Uniform quantization and the 6 dB/bit approximation
The Lloyd–Max quantizer is actually a uniform quantizer when the input pdf is uniformly distributed over the range [y_1\Delta/2,~y_M+\Delta/2). However, for a source that does not have a uniform distribution, the minimumdistortion quantizer may not be a uniform quantizer.
The analysis of a uniform quantizer applied to a uniformly distributed source can be summarized in what follows:
A symmetric source X can be modelled with f(x)= \frac1{2X_{max}}, for x \in [X_{max} , X_{max}] and 0 elsewhere. The step size \Delta = \frac {2X_{max}} {M} and the signal to quantization noise ratio (SQNR) of the quantizer is

{\rm SQNR}= 10\log_{10}{\frac {\sigma_x^2}{\sigma_q^2}} = 10\log_{10}{\frac {(M\Delta)^2/12}{\Delta^2/12}}= 10\log_{10}M^2= 20\log_{10}M.
For a fixedlength code using N bits, M=2^N, resulting in {\rm SQNR}= 20\log_{10}{2^N} = N\cdot(20\log_{10}2) = N\cdot 6.0206\,\rm{dB},
or approximately 6 dB per bit. For example, for N=8 bits, M=256 levels and SQNR = 8*6 = 48 dB; and for N=16 bits, M=65536 and SQNR = 16*6 = 96 dB. The property of 6 dB improvement in SQNR for each extra bit used in quantization is a wellknown figure of merit. However, it must be used with care: this derivation is only for a uniform quantizer applied to a uniform source.
For other source pdfs and other quantizer designs, the SQNR may be somewhat different from that predicted by 6 dB/bit, depending on the type of pdf, the type of source, the type of quantizer, and the bit rate range of operation.
However, it is common to assume that for many sources, the slope of a quantizer SQNR function can be approximated as 6 dB/bit when operating at a sufficiently high bit rate. At asymptotically high bit rates, cutting the step size in half increases the bit rate by approximately 1 bit per sample (because 1 bit is needed to indicate whether the value is in the left or right half of the prior doublesized interval) and reduces the mean squared error by a factor of 4 (i.e., 6 dB) based on the \Delta^2/12 approximation.
At asymptotically high bit rates, the 6 dB/bit approximation is supported for many source pdfs by rigorous theoretical analysis.^{[4]}^{[5]}^{[7]}^{[8]} Moreover, the structure of the optimal scalar quantizer (in the rate–distortion sense) approaches that of a uniform quantizer under these conditions.^{[7]}^{[8]}
Other fields
Many physical quantities are actually quantized by physical entities. Examples of fields where this limitation applies include electronics (due to electrons), optics (due to photons), biology (due to DNA), physics (due to Planck limits) and chemistry (due to molecules). This is sometimes known as the "quantum noise limit" of systems in those fields. This is a different manifestation of "quantization error," in which theoretical models may be analog but physically occurs digitally. Around the quantum limit, the distinction between analog and digital quantities vanishes.
See also
Notes

^ Allen Gersho and Robert M. Gray, Vector Quantization and Signal Compression, Springer, ISBN 9780792391814, 1991.

^ Hodgson, Jay (2010). Understanding Records, p.56. ISBN 9781441156075. Adapted from Franz, David (2004). Recording and Producing in the Home Studio, p.389. Berklee Press.

^ William Fleetwood Sheppard, "On the Calculation of the Most Probable Values of Frequency Constants for data arranged according to Equidistant Divisions of a Scale", Proceedings of the London Mathematical Society, Vol. 29, pp. 353–80, 1898.doi:10.1112/plms/s129.1.353

^ ^{a} ^{b} ^{c} ^{d} W. R. Bennett, "Spectra of Quantized Signals", Bell System Technical Journal, Vol. 27, pp. 446–472, July 1948.

^ ^{a} ^{b} B. M. Oliver, J. R. Pierce, and Claude E. Shannon, "The Philosophy of PCM", Proceedings of the IRE, Vol. 36, pp. 1324–1331, Nov. 1948. doi:10.1109/JRPROC.1948.231941

^ Seymour Stein and J. Jay Jones, Modern Communication Principles, McGraw–Hill, ISBN 9780070610033, 1967 (p. 196).

^ ^{a} ^{b} ^{c} Herbert Gish and John N. Pierce, "Asymptotically Efficient Quantizing", IEEE Transactions on Information Theory, Vol. IT14, No. 5, pp. 676–683, Sept. 1968. doi:10.1109/TIT.1968.1054193

^ ^{a} ^{b} ^{c} ^{d} ^{e} ^{f} ^{g} ^{h} Robert M. Gray and David L. Neuhoff, "Quantization", IEEE Transactions on Information Theory, Vol. IT44, No. 6, pp. 2325–2383, Oct. 1998. doi:10.1109/18.720541

^ ^{a} ^{b} Allen Gersho, "Quantization", IEEE Communications Society Magazine, pp. 16–28, Sept. 1977. doi:10.1109/MCOM.1977.1089500

^ Bernard Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory", IRE Trans. Circuit Theory, Vol. CT3, pp. 266–276, 1956. doi:10.1109/TCT.1956.1086334

^ ^{a} ^{b} ^{c} Bernard Widrow, "Statistical analysis of amplitude quantized sampled data systems", Trans. AIEE Pt. II: Appl. Ind., Vol. 79, pp. 555–568, Jan. 1961.

^ Daniel Marco and David L. Neuhoff, "The Validity of the Additive Noise Model for Uniform Scalar Quantizers", IEEE Transactions on Information Theory, Vol. IT51, No. 5, pp. 1739–1755, May 2005. doi:10.1109/TIT.2005.846397

^ Pohlman, Ken C. (1989). Principles of Digital Audio 2nd Edition. SAMS. p. 60.

^ Okelloto, Tom (2001). The Art of Digital Audio 3rd Edition. Focal Press.

^ Nariman Farvardin and James W. Modestino, "Optimum Quantizer Performance for a Class of NonGaussian Memoryless Sources", IEEE Transactions on Information Theory, Vol. IT30, No. 3, pp. 485–497, May 1982 (Section VI.C and Appendix B). doi:10.1109/TIT.1984.1056920

^ ^{a} ^{b} Gary J. Sullivan, "Efficient Scalar Quantization of Exponential and Laplacian Random Variables", IEEE Transactions on Information Theory, Vol. IT42, No. 5, pp. 1365–1374, Sept. 1996. doi:10.1109/18.532878

^ Toby Berger, "Optimum Quantizers and Permutation Codes", IEEE Transactions on Information Theory, Vol. IT18, No. 6, pp. 759–765, Nov. 1972. doi:10.1109/TIT.1972.1054906

^ Toby Berger, "Minimum Entropy Quantizers and Permutation Codes", IEEE Transactions on Information Theory, Vol. IT28, No. 2, pp. 149–157, Mar. 1982. doi:10.1109/TIT.1982.1056456

^ Stuart P. Lloyd, "Least Squares Quantization in PCM", IEEE Transactions on Information Theory, Vol. IT28, pp. 129–137, No. 2, March 1982 doi:10.1109/TIT.1982.1056489 (work documented in a manuscript circulated for comments at Bell Laboratories with a department log date of 31 July 1957 and also presented at the 1957 meeting of the Institute of Mathematical Statistics, although not formally published until 1982).

^ Joel Max, "Quantizing for Minimum Distortion", IRE Transactions on Information Theory, Vol. IT6, pp. 7–12, March 1960. doi:10.1109/TIT.1960.1057548

^ Philip A. Chou, Tom Lookabaugh, and Robert M. Gray, "EntropyConstrained Vector Quantization", IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP37, No. 1, Jan. 1989. doi:10.1109/29.17498
References

Sayood, Khalid (2005), Introduction to Data Compression, Third Edition, Morgan Kaufmann,

Jayant, Nikil S.; Noll, Peter (1984), Digital Coding of Waveforms: Principles and Applications to Speech and Video, Prentice–Hall,

Gregg, W. David (1977), Analog & Digital Communication, John Wiley,

Stein, Seymour; Jones, J. Jay (1967), Modern Communication Principles,
External links

Quantization noise in Digital Computation, Signal Processing, and Control, Bernard Widrow and István Kollár, 2007.

The Relationship of Dynamic Range to Data Word Size in Digital Audio Processing

RoundOff Error Variance — derivation of noise power of q²/12 for roundoff error

Dynamic Evaluation of HighSpeed, High Resolution D/A Converters Outlines HD, IMD and NPR measurements, also includes a derivation of quantization noise

Signal to quantization noise in quantized sinusoidal
Noise (physics and telecommunications)


General



Noise in...



Class of noise



Engineering
terms



Ratios



Related topics



This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.