World Library  
Flag as Inappropriate
Email this Article

Quantum biology

Article Id: WHEBN0013537626
Reproduction Date:

Title: Quantum biology  
Author: World Heritage Encyclopedia
Language: English
Subject: Biology, Biophysics, Mathematical and theoretical biology, Ecology, Jim Al-Khalili
Collection: Biophysics, Quantum Biology, Quantum Mechanics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Quantum biology

Quantum biology refers to applications of quantum mechanics to biological objects and problems. Usually, it is taken to refer to applications of the "non-trivial" quantum features such as superposition, nonlocality, entanglement and tunneling, as opposed to the "trivial" but ubiquitous quantum mechanical nature of chemical bonding, ionization, and other phenomena that are the basis of the fundamental biophysics and biochemistry of organisms. It is still a tentative field, with research into it often being neglected in favor of other applications of quantum phenomena. It can be defined as the study of quantum phenomena within biological systems. Originally it had been thought that the heat engines of biological systems were not enough to produce quantum phenomena, but as evidence mounts that view has ceased to be popular.

Austrian-born physicist and theoretical biologist Erwin Schrödinger, one of the founders of quantum theory in physics, was also one of the first scientists to suggest a study of quantum biology in his 1944 book What Is Life?.

Contents

  • Applications 1
  • References 2
  • Further reading 3
  • External links 4

Applications

Many biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve chemical reactions, light absorption, formation of excited electronic states, transfer of excitation energy, and the transfer of electrons and protons (hydrogen ions) in chemical processes such as photosynthesis and cellular respiration.[1] Quantum biology uses computation to model biological interactions in light of quantum mechanical effects.[2]

Some examples of the biological phenomena that have been studied in terms of quantum processes are the absorbance of frequency-specific radiation (i.e., photosynthesis[3] and vision[4]); the conversion of chemical energy into motion;[5] magnetoreception in animals,[6][7][8][9] DNA mutation[10] and brownian motors in many cellular processes.[11]

Recent studies have identified quantum coherence and entanglement between the excited states of different pigments in the light-harvesting stage of photosynthesis.[12][13] Although this stage of photosynthesis is highly efficient, it remains unclear exactly how or if these quantum effects are relevant biologically.[14]

The controversial theory of orchestrated objective reduction argues that coherent quantum processes within microtubules are the origin of consciousness.

References

  1. ^ Quantum Biology. University of Illinois at Urbana-Champaign, Theoretical and Computational Biophysics Group. http://www.ks.uiuc.edu/Research/quantum_biology/
  2. ^ http://www.sciencedaily.com/releases/2007/01/070116133617.htm Science Daily Quantum Biology: Powerful Computer Models Reveal Key Biological Mechanism Retrieved Oct 14, 2007
  3. ^ Quantum Secrets of Photosynthesis Revealed
  4. ^ Garab, G. (1999). Photosynthesis: Mechanisms and Effects: Proceedings of the XIth International Congress on Photosynthesis. Kluwer Academic Publishers.  
  5. ^ Levine, Raphael D. (2005). Molecular Reaction Dynamics. Cambridge University Press. pp. 16–18.  
  6. ^ Binhi, Vladimir N. (2002). Magnetobiology: Underlying Physical Problems. Academic Press. pp. 14–16.  
  7. ^ Iannis Kominis: "Quantum Zeno effect explains magnetic-sensitive radical-ion-pair reactions", Physical Review E 80, 056115 (2009) (abstract)
  8. ^ Iannis Kominis: "Radical-ion-pair reactions are the biochemical equivalent of the optical double-slit experiment", Physical Review E 83, 056118 (2011) (abstract)
  9. ^ Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, Vlatko Vedral: Sustained quantum coherence and entanglement in the avian compass, Physics Review Letters, vol. 106, no. 4, 040503 (2011) (abstract, preprint)
  10. ^ Lowdin, P.O. (1965) Quantum genetics and the aperiodic solid. Some aspects on the Biological problems of heredity, mutations, aging and tumours in view of the quantum theory of the DNA molecule. Advances in Quantum Chemistry. Volume 2. pp213-360. Academic Press
  11. ^ Harald Krug; Harald Brune; Gunter Schmid; Ulrich Simon; Viola Vogel; Daniel Wyrwa; Holger Ernst; Armin Grunwald; Werner Grunwald; Heinrich Hofmann (2006). Nanotechnology: Assessment and Perspectives. Springer-Verlag Berlin and Heidelberg GmbH & Co. K. pp. 197–240.  
  12. ^ Sarovar, Mohan; Ishizaki, Akihito; Fleming, Graham R.; Whaley, K. Birgitta (2010). "Quantum entanglement in photosynthetic light-harvesting complexes". Nature Physics 6 (6): 462–467.  
  13. ^ Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T, Cheng YC et al. (2007). "Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems.". Nature 446 (7137): 782–6.  
  14. ^ Scholes GS (2010). "Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First?". Journal of Physical Chemistry Letters 1: 2–8.  

Further reading

  • How Long is a Piece of Time? Phenomenal Time and Quantum Coherence. Toward a Solution Vimal (Ram Lakhan Pandey) & Davia (Christopher James) Quantum Biosystems, 1(2) 102-151, Editor Massimo Pregnolato
  • Derek Abbott, Julio Gea-Banacloche, Paul C. W. Davies, Stuart Hameroff, Anton Zeilinger, Jens Eisert, Howard M. Wiseman, Sergey M. Bezrukov, and Hans Frauenfelder, "Plenary debate: quantum effects in biology―trivial or not?" Fluctuation and Noise Letters, 8(1), pp. C5–C26, 2008.
  • Philip Ball, "Physics of life: The dawn of quantum biology," Nature 474 (2011), 272-274.
  • Bordonaro M, Ogryzko VV. "Quantum biology at the cellular level - Elements of the research program". Biosystems. 2013 112(1):11-30. [1]
  • P.C.W. Davies, "Does quantum mechanics play a non-trivial role in life?" BioSystems, 78, pp. 69–79, 2004.
  • P.C.W. Davies, "Quantum fluctuations and life", quant-ph/0403017, 2 March 2004
  • Johnjoe McFadden and Jim Al-Khalili, "A quantum mechanical model of adaptive mutation" BioSystems 50 (1999), 203-211.
  • Jim Al-Khalili and Johnjoe McFadden, Life on the Edge: The Coming of Age of Quantum Biology, Bantam Press, 2014 [2]
  • Ogryzko VV. "Erwin Schroedinger, Francis Crick and epigenetic stability". Biol Direct. 3, pp. 15, 2008. http://www.biology-direct.com/content/3/1/15
  • Erwin Schrödinger. What is Life?, Cambridge, 1944.
  • M. Tegmark, "Why the brain is probably not a quantum computer," Information Sciences, 128, pp. 155–179, 2000.

External links

  • Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign
  • Quantum Biology Workshop, September 2012, University of Surrey, UK - videos of plenary talks and interviews with participants
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.