World Library  
Flag as Inappropriate
Email this Article

Quasi-Zenith Satellite System

Article Id: WHEBN0003613493
Reproduction Date:

Title: Quasi-Zenith Satellite System  
Author: World Heritage Encyclopedia
Language: English
Subject: GLONASS, Satellite navigation systems, GNSS augmentation, Wide Area Augmentation System, GNSS enhancement
Collection: Satellite Navigation Systems, Space Program of Japan
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Quasi-Zenith Satellite System

Quasi-Zenith Satellite System
Country of origin  Japan
Operator(s) JAXA
Type Civilian
Status In development
Coverage Regional
Precision 0.01-1 meters
Constellation size
Number of satellites
(nominal)
4
Number of satellites
(current total)
1
First launch September 2010
Orbital characteristics
Regime(s) 3x GSO
Other details
Cost JPY 170 billion


Quasi-Zenith satellite orbit
QZSS animation

The Quasi-Zenith Satellite System (QZSS), is a proposed three-satellite regional time transfer system and Satellite Based Augmentation System for the Global Positioning System, that would be receivable within Japan. The first satellite 'Michibiki' was launched on 11 September 2010.[1] Full operational status was expected by 2013.[2][3] In March 2013, Japan's Cabinet Office announced the expansion of the Quasi-Zenith Satellite System from three satellites to four. The $526 million contract with Mitsubishi Electric for the construction of three satellites is slated for launch before the end of 2017.[4]

Authorized by the Japanese government in 2002, work on a concept for a Quasi-Zenith Satellite System (QZSS), or Juntencho (準天頂) in Japanese, began development by the Advanced Space Business Corporation (ASBC) team, including Mitsubishi Electric, Hitachi, and GNSS Technologies Inc. However, ASBC collapsed in 2007. The work was taken over by the Satellite Positioning Research and Application Center. SPAC is owned by four departments of the Japanese government: the Ministry of Education, Culture, Sports, Science and Technology, the Ministry of Internal Affairs and Communications, the Ministry of Economy, Trade and Industry, and the Ministry of Land, Infrastructure and Transport.[5]

QZSS is targeted at mobile applications, to provide communications-based services (video, audio, and data) and positioning information. With regards to its positioning service, QZSS can only provide limited accuracy on its own and is not currently required in its specifications to work in a stand-alone mode. As such, it is viewed as a GNSS Augmentation service. Its positioning service could also collaborate with the geostationary satellites in Japan's Multi-Functional Transport Satellite (MTSAT), currently under development, which itself is a Satellite Based Augmentation System similar to the U.S. Federal Aviation Administration's Wide Area Augmentation System (WAAS).

Contents

  • Orbit 1
  • QZSS and positioning augmentation 2
    • QZSS timekeeping and remote synchronization 2.1
  • See also 3
  • References 4
  • External links 5

Orbit

QZSS uses three satellites, each 120° apart, in highly inclined, slightly elliptical, geosynchronous orbits. Because of this inclination, they are not geostationary; they do not remain in the same place in the sky. Instead, their ground traces are asymmetrical figure-8 patterns (analemmas), designed to ensure that one is almost directly overhead (elevation 60° or more) over Japan at all times.

The nominal orbital elements are:

QZSS satellite Keplerian elements (nominal)[6]
Epoch 2009-12-29 12:00 UTC
Semimajor axis (a) 42,164 km
Eccentricity (e) 0.075 ± 0.015
Inclination (i) 43° ± 4°
Right ascension of the ascending node (Ω) 195° (initial)
Argument of perigee (ω) 270° ± 2°
Mean anomaly (M0) 305° (initial)
Central longitude of ground trace 135° E ± 5°

QZSS and positioning augmentation

The primary purpose of QZSS is to increase the availability of GPS in Japan's numerous urban canyons, where only satellites at very high elevation can be seen. A secondary function is performance enhancement, increasing the accuracy and reliability of GPS derived navigation solutions.

The Quasi-Zenith Satellites transmit signals compatible with the GPS L1C/A signal, as well as the modernized GPS L1C, L2C signal and L5 signals. This minimizes changes to existing GPS receivers.

Compared to standalone GPS, the combined system GPS plus QZSS delivers improved positioning performance via ranging correction data provided through the transmission of submeter-class performance enhancement signals L1-SAIF and LEX from QZS. It also improves reliability by means of failure monitoring and system health data notifications. QZSS also provides other support data to users to improve GPS satellite acquisition.

According to its original plan, QZSs was to carry two types of space-borne atomic clocks; a hydrogen maser and a rubidium (Rb) atomic clock. The development of a passive hydrogen maser for QZSS was abandoned in 2006. The positioning signal will be generated by a Rb clock and an architecture similar to the GPS timekeeping system will be employed. QZSS will also be able to use a Two-Way Satellite Time and Frequency Transfer (TWSTFT) scheme, which will be employed to gain some fundamental knowledge of satellite atomic standard behavior in space as well as for other research purposes.

QZSS timekeeping and remote synchronization

Although the first generation QZSS timekeeping system (TKS) will be based on the Rb clock, the first QZS, will carry a basic prototype of an experimental crystal clock synchronization system. During the first half of the two year in-orbit test phase, preliminary tests will investigate the feasibility of the atomic clock-less technology which might be employed in the second generation QZSS.

The mentioned QZSS TKS technology is a novel satellite timekeeping system which does not require on-board atomic clocks as used by existing navigation satellite systems such as GPS, GLONASS or the planned Galileo system. This concept is differentiated by the employment of a synchronization framework combined with lightweight steerable on-board clocks which act as transponders re-broadcasting the precise time remotely provided by the time synchronization network located on the ground. This allows the system to operate optimally when satellites are in direct contact with the ground station, making it suitable for a system like the Japanese QZSS. Low satellite mass and low satellite manufacturing and launch cost are significant advantages of this system. An outline of this concept as well as two possible implementations of the time synchronization network for QZSS were studied and published in [7] and.[8]

See also

References

  1. ^ "Launch Result of the First Quasi-Zenith Satellite 'MICHIBIKI' by H-IIA Launch Vehicle No. 18". 2010-09-11. Retrieved 2011-12-12. 
  2. ^ "QZSS in 2010". Magazine article. Asian Surveying and Mapping. 2009-05-07. Retrieved 2009-05-07. 
  3. ^ "GNSS All Over the World". The System. GPS World Online. 2007-11-01. Retrieved 2011-12-12. 
  4. ^ http://www.spaceflightnow.com/news/n1304/04qzss/ Japan to build fleet of navigation satellites 2013-04-04 Retrieved 2013-04-05
  5. ^ "Service Status of QZSS" (PDF). 2008-12-12. Retrieved 2009-05-07. 
  6. ^ Japan Aerospace Exploration Agency (2013-03-27), Interface Specifications for QZSS, version 1.5, pp. 7–8 
  7. ^ Fabrizio Tappero (April 2008), Remote Synchronization Method for the Quasi-Zenith Satellite System (PhD thesis), retrieved 2013-08-10 
  8. ^ Fabrizio Tappero (2009-05-24). Remote Synchronization Method for the Quasi-Zenith Satellite System: study of a novel satellite timekeeping system which does not require on-board atomic clocks. VDM Verlag.  
  • Quasi-Zenith Satellites System.
  • High Accuracy Positioning Experiment System Using Quasi-Zenith Satellites System (JAXA)(Japanese)
  • Petrovski, Ivan G. QZSS - Japan's New Integrated Communication and Positioning Service for Mobile Users. GPS World Online. June 1, 2003.
  • Kallender-Umezu, Paul. Japan Seeking 13 Percent Budget Hike for Space Activities.] Space.com. September 7, 2004.
  • QZSS / MSAS Status Kogure, Satoshi. Presentation at the 47th Meeting of the Civil Global Positioning System Service Interface Committee (CGSIC). September 25, 2007.

External links

  • JAXA Quasi-Zenith Satellite-1 "MICHIBIKI"
  • JAXA MICHIBIKI Special Site
  • JAXA MICHIBIKI data site
  • Quasi-Zenith Satellite System Services Inc.
  • Twitter (Japanese)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.