World Library  
Flag as Inappropriate
Email this Article

Radial velocity

Article Id: WHEBN0000207833
Reproduction Date:

Title: Radial velocity  
Author: World Heritage Encyclopedia
Language: English
Subject: ESPRESSO, Doppler spectroscopy, Proper motion, Procyon, Alpha Centauri
Collection: Astrometry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Radial velocity

A plane flying past a radar station: the plane's velocity vector (orange) is the sum of the radial velocity (green) and the tangential velocity (blue).

The radial velocity of an object with respect to a given point is the rate of change of the distance between the object and the point. That is, the radial velocity is the component of the object's velocity that points in the direction of the radius connecting the object and the point. In astronomy, the point is usually taken to be the observer on Earth, so the radial velocity then denotes the speed with which the object moves away from or approaches the Earth.

In astronomy, radial velocity most commonly refers to the spectroscopic radial velocity, which is determined by spectroscopy. i.e. by measuring the frequencies of light received from the object. By contrast, astrometric radial velocity is determined by astrometric observations (for example, a secular change in the annual parallax).[1]

Contents

  • Spectroscopic radial velocity 1
  • Detection of exoplanets 2
  • Data reduction 3
  • See also 4
  • References 5

Spectroscopic radial velocity

Light from an object with a substantial relative radial velocity at emission will be subject to the Doppler effect, so the frequency of the light decreases for objects that were receding (redshift) and increases for objects that were approaching (blueshift).

The radial velocity of a star or other luminous distant objects can be measured accurately by taking a high-resolution spectrum and comparing the measured wavelengths of known spectral lines to wavelengths from laboratory measurements. A positive radial velocity indicates the distance between the objects is or was increasing; a negative radial velocity indicates the distance between the source and observer is or was decreasing.

Diagram showing how an exoplanet's orbit changes the position and velocity of a star as they orbit a common center of mass.

In many binary stars, the orbital motion usually causes radial velocity variations of several kilometers per second (km/s). As the spectra of these stars vary due to the Doppler effect, they are called spectroscopic binaries. Radial velocity can be used to estimate the ratio of the masses of the stars, and some orbital elements, such as eccentricity and semimajor axis. The same method has also been used to detect planets around stars, in the way that the movement's measurement determines the planet's orbital period, while the resulting radial-velocity amplitude allows the calculation of the lower bound on a planet's mass. Radial velocity methods alone may only reveal a lower bound, since a large planet orbiting at a very high angle to the line of sight will perturb its star radially as much as a much smaller planet with an orbital plane on the line of sight. It has been suggested that planets with high eccentricities calculated by this method may in fact be two-planet systems of circular or near-circular resonant orbit.[2]

Detection of exoplanets

The radial velocity method to detect exoplanets

The radial velocity method to detect exoplanets is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. When the star moves towards us, its spectrum is blueshifted, while it is redshifted when it moves away from us. By regularly looking at the spectrum of a star – and so, measuring its velocity – one can see if it moves periodically due to the influence of a companion.

Data reduction

From the instrumental perspective, velocities are measured relative to the telescope's motion. So an important first step of the data reduction is to remove the contributions of

- the Earth's elliptic motion around the sun at approximately ± 30 km/s,

- a monthly rotation of ± 12 m/s of the Earth around the center of gravity of the Earth-Moon system,

- the daily rotation of the telescope with the Earth crust around the Earth axis, which is up to 400 m/s at the equator and proportional to the cosine of the telescope's latitude,

- small contributions from the Earth polar motion,

- contributions of 220 km/s from the motion around the Galactic center and associated proper motions.

See also

References

  • The Radial Velocity Equation in the Search for Exoplanets ( The Doppler Spectroscopy or Wobble Method )

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.