World Library  
Flag as Inappropriate
Email this Article

Retinoblastoma protein

Article Id: WHEBN0030855468
Reproduction Date:

Title: Retinoblastoma protein  
Author: World Heritage Encyclopedia
Language: English
Subject: Cyclin D1, ARID4A, P53, Oncolytic adenovirus, E2F2
Collection: Dna Replication, Gene Expression, Proteins, Transcription Coregulators, Transcription Factors, Tumor Suppressor Genes
Publisher: World Heritage Encyclopedia

Retinoblastoma protein

Retinoblastoma 1

PDB rendering based on 1ad6.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; OSRC; PPP1R130; RB; p105-Rb; pRb; pp110
External IDs ChEMBL: GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

The retinoblastoma protein (protein name abbreviated Rb; gene name abbreviated RB or RB1) is a tumor suppressor protein that is dysfunctional in several major cancers.[1] One function of pRb is to prevent excessive cell growth by inhibiting cell cycle progression until a cell is ready to divide. It is also a recruiter of several chromatin remodeling enzymes such as methylases and acetylases .

Rb belongs to the pocket protein family, whose members have a pocket for the functional binding of other proteins.[2][3] Should an oncogenic protein, such as those produced by cells infected by high-risk types of human papillomaviruses, bind and inactivate pRb, this can lead to cancer.


  • Name and genetics 1
  • Cell cycle suppression 2
  • Detection 3
  • Activation and inactivation 4
  • Interactions 5
  • See also 6
  • References 7
  • Further reading 8
  • External links 9

Name and genetics

In humans, the protein is encoded by the RB1 gene located on 13q14.1-q14.2. If both alleles of this gene are mutated early in life, the protein is inactivated and results in development of retinoblastoma cancer, hence the name Rb. Retinal cells are not sloughed off or replaced, and are subjected to high levels of mutagenic UV radiation, and thus most pRB knock-outs occur in retinal tissue (but it's also been documented in certain skin cancers in patients from New Zealand where the amount of UV radiation is significantly higher).

Two forms of retinoblastoma were noticed: a bilateral, familial form and a unilateral, sporadic form. Sufferers of the former were 6 times more likely to develop other types of cancer later in life.[4] This highlighted the fact that mutated Rb could be inherited and lent support to the two-hit hypothesis. This states that only one working allele of a tumour suppressor gene is necessary for its function (the mutated gene is recessive), and so both need to be mutated before the cancer phenotype will appear. In the familial form, a mutated allele is inherited along with a normal allele. In this case, should a cell sustain only one mutation in the other RB gene, all Rb in that cell would be ineffective at inhibiting cell cycle progression, allowing cells to divide uncontrollably and eventually become cancerous. Furthermore, as one allele is already mutated in all other somatic cells, the future incidence of cancers in these individuals is observed with linear kinetics.[5] The working allele need not undergo a mutation per se, as loss of heterozygosity (LOH) is frequently observed in such tumours.

However, in the sporadic form, both alleles would need to sustain a mutation before the cell can become cancerous. This explains why sufferers of sporadic retinoblastoma are not at increased risk of cancers later in life, as both alleles are functional in all their other cells. Future cancer incidence in sporadic Rb cases is observed with polynomial kinetics, not exactly quadratic as expected because the first mutation must arise through normal mechanisms, and then can be duplicated by LOH to result in a tumour progenitor.

RB1 orthologs[6] have also been identified in most mammals for which complete genome data are available.

RB/E2F-family proteins repression transcription.[7]

Cell cycle suppression

Rb restricts the cell's ability to replicate DNA by preventing its progression from the G1 (first gap phase) to S (synthesis phase) phase of the cell division cycle.[8] Rb binds and inhibits transcription factors of the E2F family, which are composed of dimers of an E2F protein and a dimerization partner (DP) protein.[9] The transcription activating complexes of E2 promoter-binding–protein-dimerization partners (E2F-DP) can push a cell into S phase.[10][11][12][13][14] As long as E2F-DP is inactivated, the cell remains stalled in the G1 phase. When Rb is bound to E2F, the complex acts as a growth suppressor and prevents progression through the cell cycle.[3] The Rb-E2F/DP complex also attracts a histone deacetylase (HDAC) protein to the chromatin, reducing transcription of S phase promoting factors, further suppressing DNA synthesis.


Several methods for detecting the RB1 gene mutations have been developed[15] including a method that can detect large deletions that correlate with advanced stage retinoblastoma.[16]

Activation and inactivation

Rb is phosphorylated to pRb by certain Cyclin Dependent Kinases (CDKs). pRb is described as being hyperphosphorylated and when in this state, it is unable to complex E2F and therefore, unable to restrict progression from the G1 phase to the S phase of the cell cycle. During the M-to-G1 transition, pRb is progressively dephosphorylated by PP1, returning to its growth-suppressive hypophosphorylated state Rb .[3][17]

When it is time for a cell to enter S phase, complexes of cyclin-dependent kinases (CDK) and cyclins phosphorylate Rb to pRb, inhibiting its activity.[2][3][18][19] The initial phosphorylation is performed by Cyclin D/CDK4/CDK6 and followed by additional phosphorylation by Cyclin E/CDK2. pRb remains phosphorylated throughout S, G2 and M phases.[3]

Phosphorylation of Rb allows E2F-DP to dissociate from pRb and become active.[3][18][11] When E2F is free it activates factors like cyclins (e.g. Cyclin E and A), which push the cell through the cell cycle by activating cyclin-dependent kinases, and a molecule called proliferating cell nuclear antigen, or PCNA, which speeds DNA replication and repair by helping to attach polymerase to DNA.[18][10][13]

Rb family proteins are components of the DREAM complex (also named LINC complex), which is composed of LIN9, LIN54, LIN37, MYBL2, RBL1, RBL2, RBBP4, TFDP1, TFDP2, E2F4 and E2F5. There is a testis-specific version of the complex, where LIN54, MYBL2 and RBBP4 are replaced by MTL5, MYBL1 and RBBP7, respectively. In Drosophila both DREAM versions also exist, the components being mip130 (lin9 homolog, replaced by aly in testes), mip120 (lin54 homolog, replaced by tomb in testes), and Myb, Caf1p55, DP, Mip40, E2F2, Rbf and Rbf2. The DREAM complex exists in quiescent cells in association with MuvB (consisting of HDAC1 or HDAC2, LIN52 and L3mbtl1, L3mbtl3 or L3mbtl4) where it represses cell cycle-dependent genes. DREAM dissociates in S phase from MuvB and gets recruited by MYB.


Retinoblastoma protein has been shown to interact with:

Overview of signal transduction pathways involved in apoptosis.

See also


  1. ^ Murphree AL, Benedict WF (March 1984). "Retinoblastoma: clues to human oncogenesis". Science 223 (4640): 1028–33.  
  2. ^ a b Korenjak M, Brehm A (October 2005). "E2F-Rb complexes regulating transcription of genes important for differentiation and development". Current Opinion in Genetics & Development 15 (5): 520–7.  
  3. ^ a b c d e f Münger K, Howley PM (November 2002). "Human papillomavirus immortalization and transformation functions". Virus Res. 89 (2): 213–28.  
  4. ^ Kleinerman RA, Tucker MA, Tarone RE, et al. (April 2005). "Risk of new cancers after radiotherapy in long-term survivors of retinoblastoma: an extended follow-up". J. Clin. Oncol. 23 (10): 2272–9.  
  5. ^ Knudson AG (April 1971). "Mutation and Cancer: Statistical Study of Retinoblastoma". Proc. Natl. Acad. Sci. U.S.A. 68 (4): 820–3.  
  6. ^ "OrthoMaM phylogenetic marker: RB1 coding sequence". 
  7. ^ Frolov MV, Dyson NJ (May 2004). "Molecular mechanisms of E2F-dependent activation and RB-mediated repression". J. Cell. Sci. 117 (Pt 11): 2173–81.  
  8. ^ Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (November 1991). "The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle". Cell 67 (2): 293–302.  
  9. ^ Wu CL, Zukerberg LR, Ngwu C, Harlow E, Lees JA (May 1995). "In vivo association of E2F and DP family proteins". Mol. Cell. Biol. 15 (5): 2536–46.  
  10. ^ a b Funk J.O., Waga S., Harry J.B., Espling E., Stillman B., and Galloway D.A. (1997). "Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein". Trends in Genetics 13 (12): 474.  
  11. ^ a b De Veylder L, Joubès J, Inzé D (December 2003). "Plant cell cycle transitions". Current Opinion in Plant Biology 6 (6): 536–43.  
  12. ^ de Jager SM, Maughan S, Dewitte W, Scofield S, Murray JA (June 2005). "The developmental context of cell-cycle control in plants". Semin. Cell Dev. Biol. 16 (3): 385–96.  
  13. ^ a b Greenblatt RJ (2005). "Human papillomaviruses: Diseases, diagnosis, and a possible vaccine". Clinical Microbiology Newsletter 27 (18): 139–45.  
  14. ^ Sinal SH, Woods CR (October 2005). "Human papillomavirus infections of the genital and respiratory tracts in young children". Semin Pediatr Infect Dis 16 (4): 306–16.  
  15. ^ Parsam VL, Kannabiran C, Honavar S, Vemuganti GK, Ali MJ (December 2009). "A comprehensive, sensitive and economical approach for the detection of mutations in the RB1 gene in retinoblastoma". J. Genet. 88 (4): 517–27.  
  16. ^ Ali MJ, Parsam VL, Honavar SG, Kannabiran C, Vemuganti GK, Reddy VAP (2010). "RB1 gene mutations in retinoblastoma and its clinical correlation". Saudi Journal of Ophthalmology 24 (4): 119–123.  
  17. ^ Vietri M, Bianchi M, Ludlow JW, Mittnacht S, Villa-Moruzzi E (2006). "Direct interaction between the catalytic subunit of Protein Phosphatase 1 and pRb". Cancer Cell Int. 6: 3.  
  18. ^ a b c Das SK, Hashimoto T, Shimizu K, et al. (November 2005). "Fucoxanthin induces cell cycle arrest at G0/G1 phase in human colon carcinoma cells through up-regulation of p21WAF1/Cip1". Biochim. Biophys. Acta 1726 (3): 328–35.  
  19. ^ Bartkova J, Grøn B, Dabelsteen E, Bartek J (February 2003). "Cell-cycle regulatory proteins in human wound healing". Arch. Oral Biol. 48 (2): 125–32.  
  20. ^ Miyamura T, Nishimura J, Yufu Y, Nawata H (February 1997). "Interaction of BCR-ABL with the retinoblastoma protein in Philadelphia chromosome-positive cell lines". Int. J. Hematol. 65 (2): 115–21.  
  21. ^ Welch PJ, Wang JY (November 1993). "A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle". Cell 75 (4): 779–90.  
  22. ^ Lu J, Danielsen M (November 1998). "Differential regulation of androgen and glucocorticoid receptors by retinoblastoma protein". J. Biol. Chem. 273 (47): 31528–33.  
  23. ^ Yeh S, Miyamoto H, Nishimura K, Kang H, Ludlow J, Hsiao P, Wang C, Su C, Chang C (July 1998). "Retinoblastoma, a tumor suppressor, is a coactivator for the androgen receptor in human prostate cancer DU145 cells". Biochem. Biophys. Res. Commun. 248 (2): 361–7.  
  24. ^ Bruno T, De Angelis R, De Nicola F, Barbato C, Di Padova M, Corbi N, Libri V, Benassi B, Mattei E, Chersi A, Soddu S, Floridi A, Passananti C, Fanciulli M (November 2002). "Che-1 affects cell growth by interfering with the recruitment of HDAC1 by Rb". Cancer Cell 2 (5): 387–99.  
  25. ^ Fanciulli M, Bruno T, Di Padova M, De Angelis R, Iezzi S, Iacobini C, Floridi A, Passananti C (May 2000). "Identification of a novel partner of RNA polymerase II subunit 11, Che-1, which interacts with and affects the growth suppression function of Rb". FASEB J. 14 (7): 904–12.  
  26. ^ a b c d Lai A, Lee JM, Yang WM, DeCaprio JA, Kaelin WG, Seto E, Branton PE (October 1999). "RBP1 Recruits Both Histone Deacetylase-Dependent and -Independent Repression Activities to Retinoblastoma Family Proteins". Mol. Cell. Biol. 19 (10): 6632–41.  
  27. ^ Ge NL, Elferink CJ (August 1998). "A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle". J. Biol. Chem. 273 (35): 22708–13.  
  28. ^ Aprelikova ON, Fang BS, Meissner EG, Cotter S, Campbell M, Kuthiala A, Bessho M, Jensen RA, Liu ET (October 1999). "BRCA1-associated growth arrest is RB-dependent". Proc. Natl. Acad. Sci. U.S.A. 96 (21): 11866–71.  
  29. ^ Fan S, Yuan R, Ma YX, Xiong J, Meng Q, Erdos M, Zhao JN, Goldberg ID, Pestell RG, Rosen EM (August 2001). "Disruption of BRCA1 LXCXE motif alters BRCA1 functional activity and regulation of RB family but not RB protein binding". Oncogene 20 (35): 4827–41.  
  30. ^ a b Yarden RI, Brody LC (April 1999). "BRCA1 interacts with components of the histone deacetylase complex". Proc. Natl. Acad. Sci. U.S.A. 96 (9): 4983–8.  
  31. ^ Johnston IM, Allison SJ, Morton JP, Schramm L, Scott PH, White RJ (June 2002). "CK2 Forms a Stable Complex with TFIIIB and Activates RNA Polymerase III Transcription in Human Cells". Mol. Cell. Biol. 22 (11): 3757–68.  
  32. ^ Sutcliffe JE, Cairns CA, McLees A, Allison SJ, Tosh K, White RJ (June 1999). "RNA Polymerase III Transcription Factor IIIB Is a Target for Repression by Pocket Proteins p107 and p130". Mol. Cell. Biol. 19 (6): 4255–61.  
  33. ^ Nishitani J, Nishinaka T, Cheng CH, Rong W, Yokoyama KK, Chiu R (February 1999). "Recruitment of the retinoblastoma protein to c-Jun enhances transcription activity mediated through the AP-1 binding site". J. Biol. Chem. 274 (9): 5454–61.  
  34. ^ Wang S, Ghosh RN, Chellappan SP (December 1998). "Raf-1 Physically Interacts with Rb and Regulates Its Function: a Link between Mitogenic Signaling and Cell Cycle Regulation". Mol. Cell. Biol. 18 (12): 7487–98.  
  35. ^ a b Wang S, Nath N, Fusaro G, Chellappan S (November 1999). "Rb and Prohibitin Target Distinct Regions of E2F1 for Repression and Respond to Different Upstream Signals". Mol. Cell. Biol. 19 (11): 7447–60.  
  36. ^ a b Simone C, Bagella L, Bellan C, Giordano A (June 2002). "Physical interaction between pRb and cdk9/cyclinT2 complex". Oncogene 21 (26): 4158–65.  
  37. ^ Gupta S, Luong MX, Bleuming SA, Miele A, Luong M, Young D, Knudsen ES, Van Wijnen AJ, Stein JL, Stein GS (September 2003). "Tumor suppressor pRB functions as a co-repressor of the CCAAT displacement protein (CDP/cut) to regulate cell cycle controlled histone H4 transcription". J. Cell. Physiol. 196 (3): 541–56.  
  38. ^ Yang R, Müller C, Huynh V, Fung YK, Yee AS, Koeffler HP (March 1999). "Functions of Cyclin A1 in the Cell Cycle and Its Interactions with Transcription Factor E2F-1 and the Rb Family of Proteins". Mol. Cell. Biol. 19 (3): 2400–7.  
  39. ^ a b Siegert JL, Rushton JJ, Sellers WR, Kaelin WG, Robbins PD (November 2000). "Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity". Oncogene 19 (50): 5703–11.  
  40. ^ Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA (May 1993). "Physical interaction of the retinoblastoma protein with human D cyclins". Cell 73 (3): 499–511.  
  41. ^ Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (July 2000). "DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters". Nat. Genet. 25 (3): 338–42.  
  42. ^ a b Nicolas E, Ait-Si-Ali S, Trouche D (August 2001). "The histone deacetylase HDAC3 targets RbAp48 to the retinoblastoma protein". Nucleic Acids Res. 29 (15): 3131–6.  
  43. ^ a b c Pardo PS, Leung JK, Lucchesi JC, Pereira-Smith OM (December 2002). "MRG15, a novel chromodomain protein, is present in two distinct multiprotein complexes involved in transcriptional activation". J. Biol. Chem. 277 (52): 50860–6.  
  44. ^ Choubey D, Li SJ, Datta B, Gutterman JU, Lengyel P (October 1996). "Inhibition of E2F-mediated transcription by p202". EMBO J. 15 (20): 5668–78.  
  45. ^ a b Fajas L, Paul C, Zugasti O, Le Cam L, Polanowska J, Fabbrizio E, Medema R, Vignais ML, Sardet C (July 2000). "pRB binds to and modulates the transrepressing activity of the E1A-regulated transcription factor p120E4F". Proc. Natl. Acad. Sci. U.S.A. 97 (14): 7738–43.  
  46. ^ Dyson N, Dembski M, Fattaey A, Ngwu C, Ewen M, Helin K (December 1993). "Analysis of p107-associated proteins: p107 associates with a form of E2F that differs from pRB-associated E2F-1". J. Virol. 67 (12): 7641–7.  
  47. ^ Wu CL, Zukerberg LR, Ngwu C, Harlow E, Lees JA (May 1995). "In vivo association of E2F and DP family proteins". Mol. Cell. Biol. 15 (5): 2536–46.  
  48. ^ Taniura H, Taniguchi N, Hara M, Yoshikawa K (January 1998). "Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1". J. Biol. Chem. 273 (2): 720–8.  
  49. ^ Lee C, Chang JH, Lee HS, Cho Y (December 2002). "Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor". Genes Dev. 16 (24): 3199–212.  
  50. ^ Miyake S, Sellers WR, Safran M, Li X, Zhao W, Grossman SR, Gan J, DeCaprio JA, Adams PD, Kaelin WG (December 2000). "Cells Degrade a Novel Inhibitor of Differentiation with E1A-Like Properties upon Exiting the Cell Cycle". Mol. Cell. Biol. 20 (23): 8889–902.  
  51. ^ MacLellan WR, Xiao G, Abdellatif M, Schneider MD (December 2000). "A Novel Rb- and p300-Binding Protein Inhibits Transactivation by MyoD". Mol. Cell. Biol. 20 (23): 8903–15.  
  52. ^ Kim TA, Lim J, Ota S, Raja S, Rogers R, Rivnay B, Avraham H, Avraham S (May 1998). "NRP/B, a Novel Nuclear Matrix Protein, Associates With p110RB and Is Involved in Neuronal Differentiation". J. Cell Biol. 141 (3): 553–66.  
  53. ^ Craven RJ, Cance WG, Liu ET (September 1995). "The nuclear tyrosine kinase Rak associates with the retinoblastoma protein pRb". Cancer Res. 55 (18): 3969–72.  
  54. ^ Lavender P, Vandel L, Bannister AJ, Kouzarides T (June 1997). "The HMG-box transcription factor HBP1 is targeted by the pocket proteins and E1A". Oncogene 14 (22): 2721–8.  
  55. ^ a b Dick FA, Sailhamer E, Dyson NJ (May 2000). "Mutagenesis of the pRB Pocket Reveals that Cell Cycle Arrest Functions Are Separable from Binding to Viral Oncoproteins". Mol. Cell. Biol. 20 (10): 3715–27.  
  56. ^ Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (January 2000). "DNA methyltransferase Dnmt1 associates with histone deacetylase activity". Nat. Genet. 24 (1): 88–91.  
  57. ^ Puri PL, Iezzi S, Stiegler P, Chen TT, Schiltz RL, Muscat GE, Giordano A, Kedes L, Wang JY, Sartorelli V (October 2001). "Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis". Mol. Cell 8 (4): 885–97.  
  58. ^ Wang S, Fusaro G, Padmanabhan J, Chellappan SP (December 2002). "Prohibitin co-localizes with Rb in the nucleus and recruits N-CoR and HDAC1 for transcriptional repression". Oncogene 21 (55): 8388–96.  
  59. ^ Luo RX, Postigo AA, Dean DC (February 1998). "Rb interacts with histone deacetylase to repress transcription". Cell 92 (4): 463–73.  
  60. ^ Ferreira R, Magnaghi-Jaulin L, Robin P, Harel-Bellan A, Trouche D (September 1998). "The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase". Proc. Natl. Acad. Sci. U.S.A. 95 (18): 10493–8.  
  61. ^ a b Fajas L, Egler V, Reiter R, Hansen J, Kristiansen K, Debril MB, Miard S, Auwerx J (December 2002). "The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation". Dev. Cell 3 (6): 903–10.  
  62. ^ Radulescu RT, Bellitti MR, Ruvo M, Cassani G, Fassina G (January 1995). "Binding of the LXCXE Insulin Motif to a Hexapeptide Derived from Retinoblastoma Protein". Biochemical and Biophysical Research Communications 206 (1): 97–102.  
  63. ^ Chan SW, Hong W (July 2001). "Retinoblastoma-binding protein 2 (Rbp2) potentiates nuclear hormone receptor-mediated transcription". J. Biol. Chem. 276 (30): 28402–12.  
  64. ^ Kim YW, Otterson GA, Kratzke RA, Coxon AB, Kaye FJ (November 1994). "Differential specificity for binding of retinoblastoma binding protein 2 to RB, p107, and TATA-binding protein". Mol. Cell. Biol. 14 (11): 7256–64.  
  65. ^ Gagrica S, Hauser S, Kolfschoten I, Osterloh L, Agami R, Gaubatz S (November 2004). "Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated protein". EMBO J. 23 (23): 4627–38.  
  66. ^ Sterner JM, Dew-Knight S, Musahl C, Kornbluth S, Horowitz JM (May 1998). "Negative Regulation of DNA Replication by the Retinoblastoma Protein Is Mediated by Its Association with MCM7". Mol. Cell. Biol. 18 (5): 2748–57.  
  67. ^ a b Leung JK, Berube N, Venable S, Ahmed S, Timchenko N, Pereira-Smith OM (October 2001). "MRG15 activates the B-myb promoter through formation of a nuclear complex with the retinoblastoma protein and the novel protein PAM14". J. Biol. Chem. 276 (42): 39171–8.  
  68. ^ Mal A, Sturniolo M, Schiltz RL, Ghosh MK, Harter ML (April 2001). "A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program". EMBO J. 20 (7): 1739–53.  
  69. ^ Gu W, Schneider JW, Condorelli G, Kaushal S, Mahdavi V, Nadal-Ginard B (February 1993). "Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation". Cell 72 (3): 309–24.  
  70. ^ Goo YH, Na SY, Zhang H, Xu J, Hong S, Cheong J, Lee SK, Lee JW (February 2004). "Interactions between activating signal cointegrator-2 and the tumor suppressor retinoblastoma in androgen receptor transactivation". J. Biol. Chem. 279 (8): 7131–5.  
  71. ^ Xia X, Cheng A, Lessor T, Zhang Y, Hamburger AW (May 2001). "Ebp1, an ErbB-3 binding protein, interacts with Rb and affects Rb transcriptional regulation". J. Cell. Physiol. 187 (2): 209–17.  
  72. ^ Xia X, Cheng A, Akinmade D, Hamburger AW (March 2003). "The N-Terminal 24 Amino Acids of the p55 Gamma Regulatory Subunit of Phosphoinositide 3-Kinase Binds Rb and Induces Cell Cycle Arrest". Mol. Cell. Biol. 23 (5): 1717–25.  
  73. ^ Darnell GA, Antalis TM, Johnstone RW, Stringer BW, Ogbourne SM, Harrich D, Suhrbier A (September 2003). "Inhibition of Retinoblastoma Protein Degradation by Interaction with the Serpin Plasminogen Activator Inhibitor 2 via a Novel Consensus Motif". Mol. Cell. Biol. 23 (18): 6520–32.  
  74. ^ Takemura M, Kitagawa T, Izuta S, Wasa J, Takai A, Akiyama T, Yoshida S (November 1997). "Phosphorylated retinoblastoma protein stimulates DNA polymerase alpha". Oncogene 15 (20): 2483–92.  
  75. ^ Buyse IM, Shao G, Huang S (May 1995). "The retinoblastoma protein binds to RIZ, a zinc-finger protein that shares an epitope with the adenovirus E1A protein". Proc. Natl. Acad. Sci. U.S.A. 92 (10): 4467–71.  
  76. ^ Simons A, Melamed-Bessudo C, Wolkowicz R, Sperling J, Sperling R, Eisenbach L, Rotter V (January 1997). "PACT: cloning and characterization of a cellular p53 binding protein that interacts with Rb". Oncogene 14 (2): 145–55.  
  77. ^ Wang S, Nath N, Adlam M, Chellappan S (June 1999). "Prohibitin, a potential tumor suppressor, interacts with RB and regulates E2F function". Oncogene 18 (23): 3501–10.  
  78. ^ Alcalay M, Tomassoni L, Colombo E, Stoldt S, Grignani F, Fagioli M, Szekely L, Helin K, Pelicci PG (February 1998). "The Promyelocytic Leukemia Gene Product (PML) Forms Stable Complexes with the Retinoblastoma Protein". Mol. Cell. Biol. 18 (2): 1084–93.  
  79. ^ a b Qian YW, Lee EY (October 1995). "Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast". J. Biol. Chem. 270 (43): 25507–13.  
  80. ^ Fusco C, Reymond A, Zervos AS (August 1998). "Molecular cloning and characterization of a novel retinoblastoma-binding protein". Genomics 51 (3): 351–8.  
  81. ^ Woitach JT, Zhang M, Niu CH, Thorgeirsson SS (August 1998). "A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability". Nat. Genet. 19 (4): 371–4.  
  82. ^ a b Hirsch HA, Gu L, Henry RW (December 2000). "The Retinoblastoma Tumor Suppressor Protein Targets Distinct General Transcription Factors To Regulate RNA Polymerase III Gene Expression". Mol. Cell. Biol. 20 (24): 9182–91.  
  83. ^ Ji P, Jiang H, Rekhtman K, Bloom J, Ichetovkin M, Pagano M, Zhu L (October 2004). "An Rb-Skp2-p27 pathway mediates acute cell cycle inhibition by Rb and is retained in a partial-penetrance Rb mutant". Mol. Cell 16 (1): 47–58.  
  84. ^ Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, Sellers RS, Nakayama K, Nakayama KI, Cobrinik D, Zhu L (January 2010). "Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/- mice". Nat. Genet. 42 (1): 83–8.  
  85. ^ Prathapam T, Kühne C, Banks L (December 2002). "Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity". Nucleic Acids Res. 30 (23): 5261–8.  
  86. ^ Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T (August 2001). "Rb targets histone H3 methylation and HP1 to promoters". Nature 412 (6846): 561–5.  
  87. ^ Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D (October 2001). "Transcriptional Repression by the Retinoblastoma Protein through the Recruitment of a Histone Methyltransferase". Mol. Cell. Biol. 21 (19): 6484–94.  
  88. ^ Shao Z, Ruppert S, Robbins PD (April 1995). "The retinoblastoma-susceptibility gene product binds directly to the human TATA-binding protein-associated factor TAFII250". Proc. Natl. Acad. Sci. U.S.A. 92 (8): 3115–9.  
  89. ^ Siegert JL, Robbins PD (January 1999). "Rb Inhibits the Intrinsic Kinase Activity of TATA-Binding Protein-Associated Factor TAFII250". Mol. Cell. Biol. 19 (1): 846–54.  
  90. ^ Shao Z, Siegert JL, Ruppert S, Robbins PD (July 1997). "Rb interacts with TAF(II)250/TFIID through multiple domains". Oncogene 15 (4): 385–92.  
  91. ^ Durfee T, Mancini MA, Jones D, Elledge SJ, Lee WH (November 1994). "The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing". J. Cell Biol. 127 (3): 609–22.  
  92. ^ Chen CF, Chen Y, Dai K, Chen PL, Riley DJ, Lee WH (September 1996). "A new member of the hsp90 family of molecular chaperones interacts with the retinoblastoma protein during mitosis and after heat shock". Mol. Cell. Biol. 16 (9): 4691–9.  
  93. ^ Chang KH, Chen Y, Chen TT, Chou WH, Chen PL, Ma YY, Yang-Feng TL, Leng X, Tsai MJ, O'Malley BW, Lee WH (August 1997). "A thyroid hormone receptor coactivator negatively regulated by the retinoblastoma protein". Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9040–5.  
  94. ^ Hannan KM, Hannan RD, Smith SD, Jefferson LS, Lun M, Rothblum LI (October 2000). "Rb and p130 regulate RNA polymerase I transcription: Rb disrupts the interaction between UBF and SL-1". Oncogene 19 (43): 4988–99.  
  95. ^ Blanchette P, Gilchrist CA, Baker RT, Gray DA (September 2001). "Association of UNP, a ubiquitin-specific protease, with the pocket proteins pRb, p107 and p130". Oncogene 20 (39): 5533–7.  

Further reading

  • Momand J, Wu HH, Dasgupta G (2000). "MDM2—master regulator of the p53 tumor suppressor protein". Gene 242 (1–2): 15–29.  
  • Zheng L, Lee WH (2003). "Retinoblastoma tumor suppressor and genome stability". Adv. Cancer Res. Advances in Cancer Research 85: 13–50.  
  • Classon M, Harlow E (2003). "The retinoblastoma tumour suppressor in development and cancer". Nature Reviews Cancer 2 (12): 910–7.  
  • Lai H, Ma F, Lai S (2003). "Identification of the novel role of pRB in eye cancer". J. Cell. Biochem. 88 (1): 121–7.  
  • Simin K, Wu H, Lu L, et al. (2006). "pRb Inactivation in Mammary Cells Reveals Common Mechanisms for Tumor Initiation and Progression in Divergent Epithelia". PLoS Biol. 2 (2): E22.  
  • Lohmann DR, Gallie BL (2004). "Retinoblastoma: revisiting the model prototype of inherited cancer". American Journal of Medical Genetics 129 (1): 23–8.  
  • Clemo NK, Arhel NJ, Barnes JD, et al. (2005). "The role of the retinoblastoma protein (Rb) in the nuclear localization of BAG-1: implications for colorectal tumour cell survival". Biochem. Soc. Trans. 33 (Pt 4): 676–8.  
  • Rodríguez-Cruz M, del Prado M, Salcedo M (2006). "[Genomic retinoblastoma perspectives: implications of tumor supressor gene RB1]". Rev. Invest. Clin. 57 (4): 572–81.  
  • Knudsen ES, Knudsen KE (2006). "Retinoblastoma tumor suppressor: where cancer meets the cell cycle". Exp. Biol. Med. (Maywood) 231 (7): 1271–81.  

External links

  • Retinoblastoma genes at the US National Library of Medicine Medical Subject Headings (MeSH)
  • GeneReviews/NIH/NCBI/UW entry on Retinoblastoma
  • Retinoblastoma Genetics
  • - The Interactive FlyRetinoblastoma-family protein Drosophila
  • - The Interactive FlyRetinoblastoma-family protein 2 Drosophila
  • - The Interactive FlyRetinoblastoma-family proteins Evolutionary Homologs
  • There is a diagram of the pRb-E2F interactions here.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.