World Library  
Flag as Inappropriate
Email this Article

Self-similarity

Article Id: WHEBN0000028782
Reproduction Date:

Title: Self-similarity  
Author: World Heritage Encyclopedia
Language: English
Subject: Recursion, Sierpinski triangle, Mandelbrot set, Koch snowflake, Major urinary proteins
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Self-similarity

A Koch curve has an infinitely repeating self-similarity when it is magnified.
Standard (trivial) self-similarity.[1]

In mathematics, a self-similar object is exactly or approximately similar to a part of itself (i.e. the whole has the same shape as one or more of the parts). Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales.[2] Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The non-trivial similarity evident in fractals is distinguished by their fine structure, or detail on arbitrarily small scales. As a counterexample, whereas any portion of a straight line may resemble the whole, further detail is not revealed.

Definition

A compact topological space X is self-similar if there exists a finite set S indexing a set of non-surjective homeomorphisms \{ f_s : s\in S \} for which

X=\bigcup_{s\in S} f_s(X)

If X\subset Y, we call X self-similar if it is the only non-empty subset of Y such that the equation above holds for \{ f_s : s\in S \} . We call

\mathfrak{L}=(X,S,\{ f_s : s\in S \} )

a self-similar structure. The homeomorphisms may be iterated, resulting in an iterated function system. The composition of functions creates the algebraic structure of a monoid. When the set S has only two elements, the monoid is known as the dyadic monoid. The dyadic monoid can be visualized as an infinite binary tree; more generally, if the set S has p elements, then the monoid may be represented as a p-adic tree.

The automorphisms of the dyadic monoid is the modular group; the automorphisms can be pictured as hyperbolic rotations of the binary tree.

A more general notion than self-similarity is Self-affinity.

Examples

Self-similarity in the Mandelbrot set shown by zooming in on the Feigenbaum point at (−1.401155189..., 0)
An image of a fern which exhibits affine self-similarity

The Mandelbrot set is also self-similar around Misiurewicz points.

Self-similarity has important consequences for the design of computer networks, as typical network traffic has self-similar properties. For example, in teletraffic engineering, packet switched data traffic patterns seem to be statistically self-similar.[3] This property means that simple models using a Poisson distribution are inaccurate, and networks designed without taking self-similarity into account are likely to function in unexpected ways.

Similarly, stock market movements are described as displaying self-affinity, i.e. they appear self-similar when transformed via an appropriate affine transformation for the level of detail being shown.[4] Andrew Lo describes stock market log return self-similarity in econometrics.[5]

Finite subdivision rules are a powerful technique for building self-similar sets, including the Cantor set and the Sierpinski triangle.

A triangle subdivided repeatedly using barycentric subdivision. The complement of the large circles is becoming a Sierpinski carpet

In nature

Close-up of a Romanesco broccoli.

Self-similarity can be found in nature, as well. To the right is a mathematically generated, perfectly self-similar image of a fern, which bears a marked resemblance to natural ferns. Other plants, such as Romanesco broccoli, exhibit strong self-similarity.

In music

See also

References

  1. ^ Mandelbrot, Benoit B. (1982). The Fractal Geometry of Nature, p.44. ISBN 978-0716711865.
  2. ^  
  3. ^ Leland et al. "On the self-similar nature of Ethernet traffic", IEEE/ACM Transactions on Networking, Volume 2, Issue 1 (February 1994)
  4. ^  
  5. ^ Campbell, Lo and MacKinlay (1991) "Econometrics of Financial Markets ", Princeton University Press! iSBN 978-0691043012

External links

  • "Copperplate Chevrons" — a self-similar fractal zoom movie
  • "Self-Similarity" — New articles about Self-Similarity. Waltz Algorithm
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.