World Library  
Flag as Inappropriate
Email this Article

Statistical graphics

Article Id: WHEBN0015934463
Reproduction Date:

Title: Statistical graphics  
Author: World Heritage Encyclopedia
Language: English
Subject: Founders of statistics, Data point, Howard Wainer, Multivariate statistics, Rmetrics
Collection: Infographics, Statistical Charts and Diagrams
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Statistical graphics

Statistical graphics, also known as graphical techniques, are graphics in the field of statistics used to visualize quantitative data.

Contents

  • Overview 1
  • History 2
  • Examples 3
  • See also 4
  • References 5
  • Further reading 6
  • External links 7

Overview

Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form, graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such as scatter plots, histograms, probability plots, spaghetti plots, residual plots, box plots, block plots and biplots.[1]

Exploratory data analysis (EDA) relies heavily on such techniques. They can also provide insight into a data set to help with testing assumptions, model selection and regression model validation, estimator selection, relationship identification, factor effect determination, and outlier detection. In addition, the choice of appropriate statistical graphics can provide a convincing means of communicating the underlying message that is present in the data to others.[1]

Graphical statistical methods have four objectives:[2]

  • The exploration of the content of a data set
  • The use to find structure in data
  • Checking assumptions in statistical models
  • Communicate the results of an analysis.

If one is not using statistical graphics, then one is forfeiting insight into one or more aspects of the underlying structure of the data.

History

Statistical graphics have been central to the development of science and date to the earliest attempts to analyse data. Many familiar forms, including bivariate plots, statistical maps, bar charts, and coordinate paper were used in the 18th century. Statistical graphics developed through attention to four problems:[3]

  • Spatial organization in the 17th and 18th century
  • Discrete comparison in the 18th and early 19th century
  • Continuous distribution in the 19th century and
  • Multivariate distribution and correlation in the late 19th and 20th century.

Since the 1970s statistical graphics have been re-emerging as an important analytic tool with the revitalisation of computer graphics and related technologies.[3]

Examples

William Playfair's trade-balance time-series chart, published in his Commercial and Political Atlas, 1786
John Snow's Cholera map in dot style, 1854.

Famous graphics were designed by:

See the plots page for many more examples of statistical graphics.

See also

References

  1. ^ a b The Role of Graphics in: NIST/SEMATECH e-Handbook of Statistical Methods, 2003-2010. Accessed May 5, 2011.
  2. ^ William G. Jacoby (1997). Statistical Graphics for Univariate and Bivariate Data: Statistical Graphics pp.2–4
  3. ^ a b James R. Beniger and Dorothy L. Robyn (1978). "Quantitative graphics in statistics: A brief history". In: The American Statistician. 32: pp. 1–11.
Attribution

 This article incorporates public domain material from websites or documents of the National Institute of Standards and Technology.

Further reading

External links

  • Trend Compass
  • Alphabetic gallery of graphical techniques
  • DataScope a website devoted to data visualization and statistical graphics
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.