World Library  
Flag as Inappropriate
Email this Article

Takens' theorem

Article Id: WHEBN0000744335
Reproduction Date:

Title: Takens' theorem  
Author: World Heritage Encyclopedia
Language: English
Subject: Singular spectrum analysis, Convergent cross mapping, Correlation integral, Correlation sum, Correlation dimension
Publisher: World Heritage Encyclopedia

Takens' theorem

In mathematics, a delay embedding theorem gives the conditions under which a chaotic dynamical system can be reconstructed from a sequence of observations of the state of a dynamical system. The reconstruction preserves the properties of the dynamical system that do not change under smooth coordinate changes, but it does not preserve the geometric shape of structures in phase space.

Takens' theorem is the 1981 delay embedding theorem of Floris Takens. It provides the conditions under which a smooth attractor can be reconstructed from the observations made with a generic function. Later results replaced the smooth attractor with a set of arbitrary box counting dimension and the class of generic functions with other classes of functions.

Delay embedding theorems are simpler to state for discrete-time dynamical systems. The state space of the dynamical system is a ν-dimensional manifold M. The dynamics is given by a smooth map

f: M \to M.

Assume that the dynamics f has a strange attractor A with box counting dimension dA. Using ideas from Whitney's embedding theorem, A can be embedded in k-dimensional Euclidean space with

k > 2 d_A.\

That is, there is a diffeomorphism φ that maps A into Rk such that the derivative of φ has full rank.

A delay embedding theorem uses an observation function to construct the embedding function. An observation function α must be twice-differentiable and associate a real number to any point of the attractor A. It must also be typical, so its derivative is of full rank and has no special symmetries in its components. The delay embedding theorem states that the function

\phi_T(x)=\left(\alpha(x), \alpha\left(f(x)\right), \dots, \alpha\left(f^{k-1}(x)\right)\right)

is an embedding of the strange attractor A.


  • Simplified, slightly inaccurate version 1
  • References 2
  • Further reading 3
  • External links 4

Simplified, slightly inaccurate version

Suppose the d-dimensional state vector xt evolves according to an unknown but continuous and (crucially) deterministic dynamic. Suppose, too, that the one-dimensional observable y is a smooth function of x, and “coupled” to all the components of x. Now at any time we can look not just at the present measurement y(t), but also at observations made at times removed from us by multiples of some lag \tau: y_{t-\tau}, y_{t-2\tau} , etc. If we use k lags, we have a k-dimensional vector. One might expect that, as the number of lags is increased, the motion in the lagged space will become more and more predictable, and perhaps in the limit k \to \infty would become deterministic. In fact, the dynamics of the lagged vectors become deterministic at a finite dimension; not only that, but the deterministic dynamics are completely equivalent to those of the original state space! (More exactly, they are related by a smooth, invertible change of coordinates, or diffeomorphism.) The magic embedding dimension k is at most 2d + 1, and often less.[1]


  1. ^ Shalizi, Cosma R. (2006). "Methods and Techniques of Complex Systems Science: An Overview". In Deisboeck, ThomasS; Kresh, J.Yasha. Complex Systems Science in Biomedicine. Springer US. pp. 33–114.  

Further reading

External links

  • Attractor Reconstruction (scholarpedia)
  • [1] Scientio's ChaosKit product uses embedding to create analyses and predictions. Access is provided online via a web service and graphic interface.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.