World Library  
Flag as Inappropriate
Email this Article

Turgor pressure

Article Id: WHEBN0004414104
Reproduction Date:

Title: Turgor pressure  
Author: World Heritage Encyclopedia
Language: English
Subject: Osmotic pressure, Cell wall, Tropism, Vital theory, Phototropism
Collection: Cell Biology, Membrane Biology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Turgor pressure

Turgor pressure pushes the plasma membrane against the cell wall of plant, bacteria, and fungi cells as well as those protist cells which have cell walls.

This pressure, turgidity, is caused by the osmotic flow of water from area of low solute concentration outside of the cell into the cell's vacuole, which has a higher solute concentration. Healthy plant cells are turgid and plants rely on turgidity to maintain rigidity. In contrast, this phenomenon is not observed in animal cells which have no cell walls to prevent them from being burst by the flow of water into the cell and must either continually pump out water, with a contractile vacuole, or live in an isotonic solution where there is no osmotic pressure.

Mechanism

A physical phenomenon known as osmosis causes water to flow from an area of high solute concentration to an area of low solute concentration until the two areas have an equal ratio of solute to water. Normally, the solute diffuses toward equilibrium as well; however, all cells are surrounded by a lipid bilayer cell membrane which permits the flow of water in and out of the cell but restricts the flow of solute under many circumstances. As a result, when a cell is placed in a hypotonic solution, water rushes into the membrane, increasing the cell's volume.

Eventually, the cell's membrane is enlarged such that it pushes against the cell's rigid wall. At this point the cell is said to be turgid.[1] In an isotonic solution, water flows into the cell at the same rate it flows out. The pressure pushing the cell's membrane against its wall is reduced and the cell is said to be 'flaccid'. When a cell is placed in a hypertonic solution water actually flows out of the cell into the surrounding solution. This, plasmolysis, causes the membrane to recede from the wall and is responsible for wilting in plant cells.

See also

References

  1. ^ Campbell, Neil A.; Reece, Jane B.; Urry, Lisa A.; Cain, Michael L.; Wasserman, Steven A.; Minorsky, Peter V.; Jackson, Robert B. (2008). Biology (8th ed.). p. 134.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from World eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.